# 一、概念
### 1.可合并堆
(1)可合并堆应支持的操作
MAKE-HEAP()
INSERT(H, x)
MINIMUM(H)
EXTRACT-MIN(H)
UNION(H1, H2)
(2)二项堆是一种可合并堆
### 2.二项树
### (1)二项树的定义
二项树是Bk一种递归定义的有序树
B0只包含一个结点
Bk(k>0)由两棵二项树B|k-1连接而成,其中一棵作为另一棵的左孩子
### (2)二项树Bk的性质
a.共有2^k个结点
b.树的高度为k
c.在深度i处恰有C(i, k)个结点
d.树的度数为k,它大于任何其它结点的度;并且,如果根的子女从左到右编号为k-1, k-1, ……, 0,子女i是子树Bi的根
### (3)二项树的结构
用左孩子用兄弟的方法表示二项树
### (4)二项树的举例
![](https://box.kancloud.cn/2016-02-02_56b02bd164469.gif)
### 3.二项堆
### (1)二项堆的定义与性质
### (2)二项堆的结构
### (3)二项堆提供的操作
# 二、代码
### Binomial_Heap.h
~~~
#include <iostream>
using namespace std;
//二项堆结点结构
struct node
{
int key;//关键字
int data;//卫星数据
node *p;//指向父结点的指针,父或左兄
node *child;//指向左孩子的指针
node *sibling;//指向右兄弟的指针
int degree;//度
//初始化
node(int n, node *nil):key(n),p(nil),child(nil),sibling(nil),degree(0){}
};
//二项堆结构
class Binomial_Heap
{
public:
node *head;
node *nil;
//构造函数
Binomial_Heap(){nil = new node(-1, nil);}
Binomial_Heap(node *NIL){nil = NIL;}
//19.2
void Make_Binomial_Heap();
node* Binomial_Heap_Minimum();
void Binomial_Link(node *y, node *z);
node *Binomial_Heap_Merge(Binomial_Heap *H1, Binomial_Heap *H2);
void Binomial_Heap_Union(Binomial_Heap *H2);
void Binomial_Heap_Insert(node *x);
node* Binomial_Heap_Extract_Min();
void Binomial_Heap_Decrease_Key(node *x, int k);
void Binomial_Heap_Delete(node *x);
};
//构造一个空的二项堆
void Binomial_Heap::Make_Binomial_Heap()
{
//初始化对象
head = nil;
}
//寻找最小关键字
node* Binomial_Heap::Binomial_Heap_Minimum()
{
//最小关键字一定位于某个二项树的根结点上
node *x = head, *y = nil;
int min = 0x7fffffff;
//遍历每个二项树的根结点
while(x != nil)
{
//找出最小值
if(x->key < min)
{
min = x->key;
y = x;
}
x = x->sibling;
}
return y;
}
//将以结点y为根的树与以结点z为根的树连接起来,使z成为y的父结点
void Binomial_Heap::Binomial_Link(node *y, node *z)
{
//只是按照定义修改指针
y->p = z;
y->sibling = z->child;
z->child = y;
//增加度
z->degree++;
}
//将H1和H2的根表合并成一个按度数的单调递增次序排列的链表
//不带头结点的单调链表的合并,返回合并后的头,不需要解释
node *Binomial_Heap::Binomial_Heap_Merge(Binomial_Heap *H1, Binomial_Heap *H2)
{
node *l1 = H1->head, *l2 = H2->head, *ret = nil, *c = ret, *temp;
while(l1 != nil && l2 != nil)
{
if(l1->degree <= l2->degree)
temp = l1;
else
temp = l2;
if(ret == nil)
{
ret = temp;
c = ret;
}
else
{
c->sibling = temp;
c = temp;
}
if(l1 == temp)l1 = l1->sibling;
else l2 = l2->sibling;
}
if(l1 != nil)
{
if(ret == nil)
ret = l1;
else
c->sibling = l1;
}
else
{
if(ret == nil)
ret = l2;
else
c->sibling = l2;
}
delete H2;
return ret;
}
//将两个二项堆合并
void Binomial_Heap::Binomial_Heap_Union(Binomial_Heap *H2)
{
//H是合并结点,用于输出
Binomial_Heap *H = new Binomial_Heap(nil);
H->Make_Binomial_Heap();
Binomial_Heap *H1 = this;
//将H1和H2的根表合并成一个按度数的单调递增次序排列的链表,并放入H中
H->head = Binomial_Heap_Merge(H1, H2);
//free the objects H1 and H2 but not the lists they point to
//如果H为空,直接返回
if(H->head == nil)
return;
//将相等度数的根连接起来,直到每个度数至多一个根时为止
//x指向当前被检查的根,prev-x指向x的前面一个根,next-x指向x的后一个根
node *x = H->head, *prev_x = nil, *next_x = x->sibling;
//根据x和next-x的度数来确定是否把两个连接起来
while(next_x != nil)
{
//情况1:度数不相等
if(x->degree != next_x->degree ||
//情况2:x为具有相同度数的三个根中的第一个
(next_x->sibling != nil && next_x->sibling->degree == x->degree))
{
//将指针指向下一个位置
prev_x = x;
x = next_x;
}
//情况3:x->key较小,将next-x连接到x上,将next-x从根表中去掉
else if(x->key <= next_x->key)
{
//去掉next-x
x->sibling = next_x->sibling;
//使next-x成为x的左孩子
Binomial_Link(next_x, x);
}
//情况4:next-x->key关键字较小,x被连接到next-x上
else
{
//将x从根表中去掉
if(prev_x == nil)//x是根表中的第一个根
H->head = next_x;
else//x不是根表中的第一个根
prev_x->sibling = next_x;
//使x成为next-x的最左孩子
Binomial_Link(x, next_x);
//更新x以进入下一轮迭代
x = next_x;
}
next_x = x->sibling;
}
head = H->head;
}
//将结点x插入到二项堆H中
void Binomial_Heap::Binomial_Heap_Insert(node *x)
{
//构造一个临时的二项堆HH,只包含一个结点x
Binomial_Heap *HH = new Binomial_Heap;
HH->Make_Binomial_Heap();
x->p = nil;
x->child = nil;
x->sibling = nil;
x->degree = 0;
HH->head = x;
//将H与HH合并,同时释放HH
Binomial_Heap_Union(HH);
}
//抽取具有最小关键字的结点
node* Binomial_Heap::Binomial_Heap_Extract_Min()
{
//最小关键字一定位于某个二项树的根结点上
node *x = head, *y = nil, *ret;
int min;
if(x == nil)
{
//cout<<"empty"<<endl;
return nil;
}
min = x->key;
//1.find the root x with the minimum key in the root list of H,
//遍历每个二项树的根结点,为了删除这个结点,还需要知道x的前一个根结点
while(x->sibling != nil)
{
//找出最小值
if(x->sibling->key < min)
{
min = x->sibling->key;
y = x;
}
x = x->sibling;
}
ret = x;
//1.and remove x from the root list of H
//删除结点分为两个情况,结点是二项堆中的第一个树,删除结点后,结点的child保存到temp中
node *temp = NULL;
if(y == nil)
{
x = head;
temp = x->child;
head = x->sibling;
}
//结点不是二项堆中的第一个树
else
{
x = y->sibling;
y->sibling = x->sibling;
temp = x->child;
}
//2.
//设待删除结点是二项树T的根,那么删除这个结点后,T变成了一个二项堆
Binomial_Heap *HH = new Binomial_Heap(nil);
HH->Make_Binomial_Heap();
//3.reverse the order of the linked list of x'childern,setting the p field of each child to NIL, and set head[HH] to point to the head of the resulting list
//正常情况下,二项堆中的树的度从小到大排。此时HH中的树的度是从大到排的,因此要对HH中的树做一个逆序
node *p;
while(temp != nil)
{
p = temp->sibling;
temp->sibling = HH->head;
HH->head = temp;
temp->p = nil;
temp = p;
}
//4.
//原二项堆H删除二项树T后成为新二项堆H,二项树T删除根结点后变成新二项堆HH
//将H和HH合并
Binomial_Heap_Union(HH);
return x;
}
//将二项堆H中的某一结点x的关键字减小为一个新值k
void Binomial_Heap::Binomial_Heap_Decrease_Key(node *x, int k)
{
//引发错误
if(k > x->key)
{
cout<<"new key is greater than current key"<<endl;
return ;
}
//与二叉最小堆中相同的方式来减小一个关键字,使该关键字在堆中冒泡上升
x->key = k;
node *y = x, *z = y->p;
while(z != nil && y->key < z->key)
{
swap(y->key, z->key);
swap(y->data, z->data);
y = z;
z = y->p;
}
}
//删除一个关键字
void Binomial_Heap::Binomial_Heap_Delete(node *x)
{
//将值变为最小,升到堆顶
Binomial_Heap_Decrease_Key(x, -0x7fffffff);
//删除堆顶元素
Binomial_Heap_Extract_Min();
}
~~~
### main.cpp
~~~
#include <iostream>
using namespace std;
#include "Binomial_Heap.h"
int main()
{
char ch;
int n;
//生成一个空的二项堆
Binomial_Heap *H = new Binomial_Heap;
H->Make_Binomial_Heap();
//各种测试
while(cin>>ch)
{
switch (ch)
{
case 'I'://插入一个元素
{
cin>>n;
node *x = new node(n, H->nil);
H->Binomial_Heap_Insert(x);
break;
}
case 'M'://返回最小值
{
node *ret = H->Binomial_Heap_Minimum();
if(ret == H->nil)
cout<<"empty"<<endl;
else
cout<<ret->key<<endl;
break;
}
case 'K'://更改某个关键字的值,使之变小
{
//因为没有Search函数,只能对最小值的结点进行测试
node *ret = H->Binomial_Heap_Minimum();
if(ret == H->nil)
cout<<"empty"<<endl;
else
{
cin>>n;
H->Binomial_Heap_Decrease_Key(ret, n);
}
break;
}
case 'E'://提取关键字最小的值并从堆中删除
{
H->Binomial_Heap_Extract_Min();
break;
}
case 'D'://删除某个结点
{
node *ret = H->Binomial_Heap_Minimum();
if(ret == H->nil)
cout<<"empty"<<endl;
else
H->Binomial_Heap_Delete(ret);
break;
}
}
}
return 0;
}
~~~
# 三、练习
### 19.1二项树与二项堆
~~~
19.1-1
x不是根,则degree[sibling[x]] < degree[x]
x是根,则degree[sibling[x]] > degree[x]
19.1-2
degree[p[x]] > degree[x]
~~~
### 19.2对二项堆的操作
19.2-1
木有伪代码,直接看代码
~~~
//将H1和H2的根表合并成一个按度数的单调递增次序排列的链表
//不带头结点的单调链表的合并,返回合并后的头,不需要解释
node *Binomial_Heap::Binomial_Heap_Merge(Binomial_Heap *H1, Binomial_Heap *H2)
{
node *l1 = H1->head, *l2 = H2->head, *ret = nil, *c = ret, *temp;
while(l1 != nil && l2 != nil)
{
if(l1->degree <= l2->degree)
temp = l1;
else
temp = l2;
if(ret == nil)
{
ret = temp;
c = ret;
}
else
{
c->sibling = temp;
c = temp;
}
if(l1 == temp)l1 = l1->sibling;
else l2 = l2->sibling;
}
if(l1 != nil)
{
if(ret == nil)
ret = l1;
else
c->sibling = l1;
}
else
{
if(ret == nil)
ret = l2;
else
c->sibling = l2;
}
delete H2;
return ret;
}
~~~
19.2-2
![](https://box.kancloud.cn/2016-02-02_56b02bd1737c0.gif)
19.2-3
![](https://box.kancloud.cn/2016-02-02_56b02bd1821c8.gif)
19.2-5
如果可以将关键字的值置为正无穷,BINOMIAL-HEAP-MINIMUM将无法区分二项堆为空和最小关键字为无穷大这两种情况,只需在返回加以区分即可
~~~
BINOMIAL-HEAP-MINIMUM(H)
1 y <- NIL
2 x <- head[H]
3 min <- 0x7fffffff
4 while x != NIL
5 do if key[x] < min
6 then min <- key[x]
7 y <- x
8 x <- sibling[x]
9 if min = 0x7fffffff and head[H] != NIL
10 then return head[H]
11 return y
~~~
19.2-6
不需要表示-0x7fffffff,只要比最小值小就可以了
~~~
BINOMIAL-HEAP-DELETE(H)
1 y <- BINOMIAL-HEAP-MINIMUM(H)
2 BINOMIAL-HEAP-DECREASE-KEY(H, x, key[y]-1)
3 BINOMIAL-HEAP-EXTRACT-MIN(H)
~~~
19.2-7
将一个二项堆H与一个二进制数x对应,对应方式x=func(H)为:
若H中有一棵二项树的根的度数为k,则将x的第k为置1。
(1)令一个二项堆H1有x1=func(H1),在H1上插入一个结点后变为H2,有x2=func(H2),则x2=x1+1
(2)令两个二项堆H1、H2,H1、H2合并后为二项堆H3,,有x1=func(H1)、x2=func(H2)、x3=func(H3),则x1+x2=x3
19.2-8
待解决
# 四、思考题
### 19-1 2-3-4堆
求思路![可怜](https://box.kancloud.cn/2016-02-02_56b02bd29015a.gif)
### 19-2 采用二项堆的最小生成树算法
见[算法导论 19-2 采用二项堆的最小生成树算法](http://blog.csdn.net/mishifangxiangdefeng/article/details/8184470)
- 前言
- 第6章 堆排序
- 6-3 Young氏矩阵
- 第7章 快速排序
- 第8章 线性时间排序
- 第9章 排序和顺序统计学算法导论
- 算法导论 9.1-1 求第二小元素
- 第10章 10.1 栈和队列
- 第10章 10.2 链表
- 第10章 10.3 指针和对象实现
- 第10章 10.4 有根树的表示
- 第11章-散列表
- 第12章 二叉查找树
- 第13章 红黑树
- 第14章 14.1 动态顺序统计
- 算法导论-14-1-最大重叠点
- 算法导论-14-2-Josephus排列
- 第14章 14.3 区间树
- 第15章 动态规划
- 第16章 贪心算法
- 第18章 B树
- 第19章-二项堆
- 第20章 斐波那契堆
- 第21章 用于不相交集合的数据结构
- 第22章 图的基本算法 22.1 图的表示
- 第22章 图算法 22.2 广度优先搜索
- 第22章 图算法 22.3 深度优先搜索
- 第22章 图的基本算法 22.4 拓扑排序
- 第22章 图的基本算法 22.5 强联通分支