## 7) 负载均衡上报Host主机信息API(V0.4)
### 7.1 proto通信协议定义
```protobuf
syntax = "proto3";
package lars;
/* Lars系统的消息ID */
enum MessageId {
ID_UNKNOW = 0; //proto3 enum第一个属性必须是0,用来占位
ID_GetRouteRequest = 1; //向DNS请求Route对应的关系的消息ID
ID_GetRouteResponse = 2; //DNS回复的Route信息的消息ID
ID_ReportStatusRequest = 3; //上报host调用状态信息请求消息ID
ID_GetHostRequest = 4; //API 发送请求host信息给 Lb Agent模块 消息ID
ID_GetHostResponse = 5; //agent 回执给 API host信息的 消息ID
ID_ReportRequest = 6; //API report get_host的调用结果给agent的 消息ID
}
//...
//...
// API 上报调用结果给 Agent(UDP)
message ReportRequest {
int32 modid = 1;
int32 cmdid = 2;
HostInfo host = 3;
int32 retcode = 4;
}
```
`ID_ReportRequest`和 `message ReportRequest `是针对API层与agent的请求互通协议。
### 7.2 Lars-API:Reporter()方法客户端实现
> Lars/api/cpp/lars_api/lars_api.h
```c
#pragma once
#include "lars_reactor.h"
#include <string>
class lars_client
{
public:
lars_client();
~lars_client();
//lars 系统获取host信息 得到可用host的ip和port
int get_host(int modid, int cmdid, std::string& ip, int &port);
//lars 系统上报host调用信息
void report(int modid, int cmdid, const std::string &ip, int port, int retcode);
private:
int _sockfd[3]; //3个udp socket fd 对应agent 3个udp server
uint32_t _seqid; //消息的序列号
};
```
新增`report()`方法。
> Lars/api/cpp/lars_api/lars_api.cpp
```c
//lars 系统上报host调用信息
void lars_client::report(int modid, int cmdid, const std::string &ip, int port, int retcode)
{
//1 封装上报消息
lars::ReportRequest req;
req.set_modid(modid);
req.set_cmdid(cmdid);
req.set_retcode(retcode);
//1.1 host信息
lars::HostInfo *hp = req.mutable_host();
//ip
struct in_addr inaddr;
inet_aton(ip.c_str(), &inaddr);
int ip_num = inaddr.s_addr;
hp->set_ip(ip_num);
//port
hp->set_port(port);
//2. send
char write_buf[4096];
//消息头
msg_head head;
head.msglen = req.ByteSizeLong();
head.msgid = lars::ID_ReportRequest;
memcpy(write_buf, &head, MESSAGE_HEAD_LEN);
req.SerializeToArray(write_buf + MESSAGE_HEAD_LEN, head.msglen);
int index = (modid+cmdid)%3;
int ret = sendto(_sockfd[index], write_buf, head.msglen + MESSAGE_HEAD_LEN, 0, NULL, 0);
if (ret == -1) {
perror("sendto");
}
}
```
> Lars/api/cpp/example/example.cpp
```c
int ret = api.get_host(modid, cmdid, ip, port);
if (ret == 0) {
std::cout << "host is " << ip << ":" << port << std::endl;
//上报调用结果
api.report(modid, cmdid, ip, port, 0);
}
```
在example的业务应用中,加上调用上报api。在每次调用完`get_host`。
### 7.3 report业务添加的配置参数信息
> Lars/lars_loadbalance_agent/conf/lars_lb_agent.conf
```ini
[reporter]
ip = 127.0.0.1
port = 7779
[dnsserver]
ip = 127.0.0.1
port = 7778
[loadbalance]
;经过若干次获取请求host节点后,试探选择一次overload过载节点
probe_num=10
;初始化host_info主机信息访问成功的个数,防止刚启动时少量失败就认为过载
init_succ_cnt=180
;当idle节点失败率高于此值,节点变overload状态
err_rate=0.1
;当overload节点成功率高于此值,节点变成idle状态
succ_rate=0.95
;当idle节点连续失败次数超过此值,节点变成overload状态
contin_err_limit=15
;当overload节点连续成功次数超过此值, 节点变成idle状态
contin_succ_limit=15
```
配置文件里在`[loadbalance]`中新增了一些字段。
那么我们需要在启动lb_agent的时候,加载这些配置文件参数.
> lars_loadbalance_agent/include/main_server.h
```c
#pragma once
#include "lars_reactor.h"
#include "lars.pb.h"
#include "route_lb.h"
struct load_balance_config
{
//经过若干次获取请求host节点后,试探选择一次overload过载节点
int probe_num;
//初始化host_info主机信息访问成功的个数,防止刚启动时少量失败就认为过载
int init_succ_cnt;
//**************************************************
//当idle节点失败率高于此值,节点变overload状态
float err_rate;
//当overload节点成功率高于此值,节点变成idle状态
float succ_rate;
//当idle节点连续失败次数超过此值,节点变成overload状态
int contin_err_limit;
//当overload节点连续成功次数超过此值, 节点变成idle状态
int contin_succ_limit;
//当前agent本地ip地址(用于上报 填充caller字段)
uint32_t local_ip;
//**************************************************
};
```
> lars_loadbalance_agent/src/main_server.cpp
```c
#include "main_server.h"
#include "lars.pb.h"
#include <netdb.h>
// ...
//--------- 全局资源 ----------
static void init_lb_agent()
{
//1. 加载配置文件
config_file::setPath("./conf/lars_lb_agent.conf");
lb_config.probe_num = config_file::instance()->GetNumber("loadbalance", "probe_num", 10);
lb_config.init_succ_cnt = config_file::instance()->GetNumber("loadbalance", "init_succ_cnt", 180);
lb_config.err_rate = config_file::instance()->GetFloat("loadbalance", "err_rate", 0.1);
lb_config.succ_rate = config_file::instance()->GetFloat("loadbalance", "succ_rate", 0.92);
lb_config.contin_succ_limit = config_file::instance()->GetNumber("loadbalance", "contin_succ_limit", 10);
lb_config.contin_err_limit = config_file::instance()->GetNumber("loadbalance", "contin_err_limit", 10);
//2. 初始化3个route_lb模块
create_route_lb();
//3. 加载本地ip
char my_host_name[1024];
if (gethostname(my_host_name, 1024) == 0) {
struct hostent *hd = gethostbyname(my_host_name);
if (hd)
{
struct sockaddr_in myaddr;
myaddr.sin_addr = *(struct in_addr*)hd->h_addr;
lb_config.local_ip = ntohl(myaddr.sin_addr.s_addr);
}
}
if (!lb_config.local_ip) {
struct in_addr inaddr;
inet_aton("127.0.0.1", &inaddr);
lb_config.local_ip = ntohl(inaddr.s_addr);
}
}
// ...
```
这里的本地ip,是之后在上报的时候,发送消息需要一个caller参数,这个caller参数我们就暂时默认是当前agent的ip为caller。
### 7.4 Agent UDP Server处理API-Report请求
接下来我们针对API发送的report的`ID_ReportRequest`进行处理.
> lars_loadbalance_agent/src/agent_udp_server.cpp
```c
#include "lars_reactor.h"
#include "main_server.h"
// ...
static void report_cb(const char *data, uint32_t len, int msgid, net_connection *net_conn, void *user_data)
{
lars::ReportRequest req;
req.ParseFromArray(data, len);
route_lb *ptr_route_lb = (route_lb*)user_data;
ptr_route_lb->report_host(req);
}
void * agent_server_main(void * args)
{
long index = (long)args;
short port = index + 8888;
event_loop loop;
udp_server server(&loop, "0.0.0.0", port);
//给server注册消息分发路由业务, 针对ID_GetHostRequest处理 每个udp拥有一个对应的route_lb
server.add_msg_router(lars::ID_GetHostRequest, get_host_cb, r_lb[port-8888]);
//======================================================
//给server注册消息分发路由业务,针对ID_ReportRequest处理
server.add_msg_router(lars::ID_ReportRequest, report_cb, r_lb[port-8888]);
//======================================================
printf("agent UDP server :port %d is started...\n", port);
loop.event_process();
return NULL;
}
void start_UDP_servers(void)
{
for (long i = 0; i < 3; i ++) {
pthread_t tid;
int ret = pthread_create(&tid, NULL, agent_server_main, (void*)i);
if (ret == -1) {
perror("pthread_create");
exit(1);
}
pthread_detach(tid);
}
}
```
这里主要是通过一个udp server中的route_lb对象来调用的`report_host(req)`方法。我们来实现这个方法。
> lars_loadbalance_agent/src/route_lb.cpp
```c
//agent 上报某主机的获取结果
void route_lb::report_host(lars::ReportRequest req)
{
int modid = req.modid();
int cmdid = req.cmdid();
int retcode = req.retcode();
int ip = req.host().ip();
int port = req.host().port();
uint64_t key = ((uint64_t)modid << 32) + cmdid;
pthread_mutex_lock(&_mutex);
if (_route_lb_map.find(key) != _route_lb_map.end()) {
load_balance *lb = _route_lb_map[key];
lb->report(ip, port, retcode);
//上报信息给远程reporter服务器
lb->commit();
}
pthread_mutex_unlock(&_mutex);
}
```
当然,route_lb最终还是分管每个modid/cmdid对应的load_balance模块,那么选择一个可用的load_balance对象,调用`load_balance`的`report()`方法.而通过`commit()`方法,将report的上报结果提交到远程的`report service`中去。
接下来我们看一下`load_balance`的report方法实现.
> lars_loadbalance_agent/src/load_balance.cpp
```c
//上报当前host主机调用情况给远端repoter service
void load_balance::report(int ip, int port, int retcode)
{
uint64_t key = ((uint64_t)ip << 32) + port;
if (_host_map.find(key) == _host_map.end()) {
return;
}
//1 计数统计
host_info *hi = _host_map[key];
if (retcode == lars::RET_SUCC) { // retcode == 0
//更新虚拟成功、真实成功次数
hi->vsucc ++;
hi->rsucc ++;
//连续成功增加
hi->contin_succ ++;
//连续失败次数归零
hi->contin_err = 0;
}
else {
//更新虚拟失败、真实失败次数
hi->verr ++;
hi->rerr ++;
//连续失败个数增加
hi->contin_err++;
//连续成功次数归零
hi->contin_succ = 0;
}
//2.检查节点状态
//检查idle节点是否满足overload条件
//或者overload节点是否满足idle条件
//--> 如果是dile节点,则只有调用失败才有必要判断是否达到overload条件
if (hi->overload == false && retcode != lars::RET_SUCC) {
bool overload = false;
//idle节点,检查是否达到判定为overload的状态条件
//(1).计算失败率,如果大于预设值失败率,则为overload
double err_rate = hi->verr * 1.0 / (hi->vsucc + hi->verr);
if (err_rate > lb_config.err_rate) {
overload = true;
}
//(2).连续失败次数达到阈值,判定为overload
if( overload == false && hi->contin_err >= (uint32_t)lb_config.contin_err_limit) {
overload = true;
}
//判定overload需要做的更改流程
if (overload) {
struct in_addr saddr;
saddr.s_addr = htonl(hi->ip);
printf("[%d, %d] host %s:%d change overload, succ %u err %u\n",
_modid, _cmdid, inet_ntoa(saddr), hi->port, hi->vsucc, hi->verr);
//设置hi为overload状态
hi->set_overload();
//移出_idle_list,放入_overload_list
_idle_list.remove(hi);
_overload_list.push_back(hi);
return;
}
}
//--> 如果是overload节点,则只有调用成功才有必要判断是否达到idle条件
else if (hi->overload == true && retcode == lars::RET_SUCC) {
bool idle = false;
//overload节点,检查是否达到回到idle状态的条件
//(1).计算成功率,如果大于预设值的成功率,则为idle
double succ_rate = hi->vsucc * 1.0 / (hi->vsucc + hi->verr);
if (succ_rate > lb_config.succ_rate) {
idle = true;
}
//(2).连续成功次数达到阈值,判定为idle
if (idle == false && hi->contin_succ >= (uint32_t)lb_config.contin_succ_limit) {
idle = true;
}
//判定为idle需要做的更改流程
if (idle) {
struct in_addr saddr;
saddr.s_addr = htonl(hi->ip);
printf("[%d, %d] host %s:%d change idle, succ %u err %u\n",
_modid, _cmdid, inet_ntoa(saddr), hi->port, hi->vsucc, hi->verr);
//设置为idle状态
hi->set_idle();
//移出overload_list, 放入_idle_list
_overload_list.remove(hi);
_idle_list.push_back(hi);
return;
}
}
//TODO 窗口检查和超时机制
}
```
其中`set_idle()`与`set_overload()`方法实现如下:
> lars_loadbalance_agent/src/host_info.cpp
```c
#include "host_info.h"
#include "main_server.h"
void host_info::set_idle()
{
vsucc = lb_config.init_succ_cnt;
verr = 0;
rsucc = 0;
rerr = 0;
contin_succ = 0;
contin_err = 0;
overload = false;
}
void host_info::set_overload()
{
vsucc = 0;
verr = lb_config.init_err_cnt;//overload的初试虚拟err错误次数
rsucc = 0;
rerr = 0;
contin_err = 0;
contin_succ = 0;
overload = true;
}
```
`load_balance`的`report()`方法实现主要是针对两个链表做节点的交替处理。和成功率失败率的判断。
> 节点失败率 = 节点`verr` / (`vsucc` + `verr`)
> 节点成功率 = 节点`vsucc` / (`vsucc` + `verr`)
当idle节点的失败率>预设值(默认10%),将节点判定为overload;
当overload节点的成功率>预设值(默认95%),将节点判定为idle;
而不可以idle/overload节点都只关注成功率or都只关注失败率,这样可能造成节点在idle/overload状态间频繁切换
为idle节点、overload节点设置不同的阈值可以区别对待。
接下来我们来实现`load_balance`的`commit()`方法。
> lars_loadbalance_agent/src/load_balance.cpp
```c
//提交host的调用结果给远程reporter service上报结果
void load_balance::commit()
{
if (this->empty() == true) {
return;
}
//1. 封装请求消息
lars::ReportStatusRequest req;
req.set_modid(_modid);
req.set_cmdid(_cmdid);
req.set_ts(time(NULL));
req.set_caller(lb_config.local_ip);
//2. 从idle_list取值
for (host_list_it it = _idle_list.begin(); it != _idle_list.end(); it++) {
host_info *hi = *it;
lars::HostCallResult call_res;
call_res.set_ip(hi->ip);
call_res.set_port(hi->port);
call_res.set_succ(hi->rsucc);
call_res.set_err(hi->rerr);
call_res.set_overload(false);
req.add_results()->CopyFrom(call_res);
}
//3. 从over_list取值
for (host_list_it it = _overload_list.begin(); it != _overload_list.end(); it++) {
host_info *hi = *it;
lars::HostCallResult call_res;
call_res.set_ip(hi->ip);
call_res.set_port(hi->port);
call_res.set_succ(hi->rsucc);
call_res.set_err(hi->rerr);
call_res.set_overload(true);
req.add_results()->CopyFrom(call_res);
}
//4 发送给report_client 的消息队列
report_queue->send(req);
}
```
---
### 关于作者:
作者:`Aceld(刘丹冰)`
mail: [danbing.at@gmail.com](mailto:danbing.at@gmail.com)
github: [https://github.com/aceld](https://github.com/aceld)
原创书籍: [https://www.kancloud.cn/@aceld](https://www.kancloud.cn/@aceld)
![](https://img.kancloud.cn/b0/d1/b0d11a21ba62e96aef1c11d5bfff2cf8_227x227.jpg)
>**原创声明:未经作者允许请勿转载, 如果转载请注明出处**
- 一、Lars系统概述
- 第1章-概述
- 第2章-项目目录构建
- 二、Reactor模型服务器框架
- 第1章-项目结构与V0.1雏形
- 第2章-内存管理与Buffer封装
- 第3章-事件触发EventLoop
- 第4章-链接与消息封装
- 第5章-Client客户端模型
- 第6章-连接管理及限制
- 第7章-消息业务路由分发机制
- 第8章-链接创建/销毁Hook机制
- 第9章-消息任务队列与线程池
- 第10章-配置文件读写功能
- 第11章-udp服务与客户端
- 第12章-数据传输协议protocol buffer
- 第13章-QPS性能测试
- 第14章-异步消息任务机制
- 第15章-链接属性设置功能
- 三、Lars系统之DNSService
- 第1章-Lars-dns简介
- 第2章-数据库创建
- 第3章-项目目录结构及环境构建
- 第4章-Route结构的定义
- 第5章-获取Route信息
- 第6章-Route订阅模式
- 第7章-Backend Thread实时监控
- 四、Lars系统之Report Service
- 第1章-项目概述-数据表及proto3协议定义
- 第2章-获取report上报数据
- 第3章-存储线程池及消息队列
- 五、Lars系统之LoadBalance Agent
- 第1章-项目概述及构建
- 第2章-主模块业务结构搭建
- 第3章-Report与Dns Client设计与实现
- 第4章-负载均衡模块基础设计
- 第5章-负载均衡获取Host主机信息API
- 第6章-负载均衡上报Host主机信息API
- 第7章-过期窗口清理与过载超时(V0.5)
- 第8章-定期拉取最新路由信息(V0.6)
- 第9章-负载均衡获取Route信息API(0.7)
- 第10章-API初始化接口(V0.8)
- 第11章-Lars Agent性能测试工具
- 第12章- Lars启动工具脚本