## 12) Lars Agent性能测试工具
### 12.1 QPS测试
> Lars/api/cpp/example/qps.cpp
```c
#include <stdlib.h>
#include <iostream>
#include <pthread.h>
#include "lars_api.h"
struct ID
{
int t_id;
int modid;
int cmdid;
};
void *test_qps(void *args)
{
int ret = 0;
ID *id = (ID*)args;
int modid = id->modid;
int cmdid = id->cmdid;
lars_client api;
std::string ip;
int port;
//qps记录
long qps = 0;
//记录最后时间
long last_time = time(NULL);
long total_qps = 0;
long total_time_second = 0;
//1. lars_api 初始化(只调用一次)
ret = api.reg_init(modid, cmdid);
if (ret != 0) {
std::cout << "modid " << modid << ", cmdid " << cmdid << " still not exist host, after register, ret = " << ret << std::endl;
}
while (1) {
ret = api.get_host(modid, cmdid, ip, port);
if (ret == 0 || ret == 1 || ret == 3) { // 成功,过载,不存在 均是合法返回
++qps;
if (ret == 0) {
api.report(modid, cmdid, ip, port, 0);//上报成功
}
else if (ret == 1) {
api.report(modid, cmdid, ip, port, 1);//上报过载
}
}
else {
printf("[%d,%d] get error %d\n", modid, cmdid, ret);
}
//当前时间
long current_time = time(NULL);
if (current_time - last_time >= 1) {
total_time_second += 1;
total_qps += qps;
last_time = current_time;
printf("thread:[%d] --> qps = [%ld], average = [%ld]\n", id->t_id, qps, total_qps/total_time_second);
qps = 0;
}
}
return NULL;
}
int main(int argc, char **argv)
{
if (argc != 2) {
printf("./qps [thread_num]\n");
return 1;
}
int cnt = atoi(argv[1]);
ID *ids = new ID[cnt];
pthread_t *tids = new pthread_t[cnt];
//制作模拟的modid/cmdid
for (int i = 0; i < cnt; i++) {
ids[i].t_id = i;
ids[i].modid = i + 1;
ids[i].cmdid = 1;
}
for (int i = 0; i < cnt; i++) {
pthread_create(&tids[i], NULL, test_qps, &ids[i]);
}
for (int i = 0; i < cnt; i++) {
pthread_join(tids[i], NULL);
}
return 0;
}
```
### 12.2 测试结果
分别启动Lars-Reporter、Lars-Dns、Lars-LB-Agent三个service服务
看客户端运行结果
```bash
$ ./qps 1
thread:[0] --> qps = [4594], average = [4594]
thread:[0] --> qps = [5159], average = [4876]
thread:[0] --> qps = [5190], average = [4981]
thread:[0] --> qps = [5039], average = [4995]
thread:[0] --> qps = [4949], average = [4986]
thread:[0] --> qps = [5111], average = [5007]
thread:[0] --> qps = [5075], average = [5016]
thread:[0] --> qps = [5067], average = [5023]
thread:[0] --> qps = [5104], average = [5032]
thread:[0] --> qps = [4976], average = [5026]
thread:[0] --> qps = [5022], average = [5026]
thread:[0] --> qps = [5088], average = [5031]
thread:[0] --> qps = [5114], average = [5037]
thread:[0] --> qps = [5072], average = [5040]
thread:[0] --> qps = [4808], average = [5024]
thread:[0] --> qps = [5119], average = [5030]
thread:[0] --> qps = [5055], average = [5031]
thread:[0] --> qps = [5026], average = [5031]
thread:[0] --> qps = [5040], average = [5032]
thread:[0] --> qps = [4931], average = [5026]
thread:[0] --> qps = [5073], average = [5029]
...
```
这里我们客户端是开启一个线程进行测试,平均每秒服务端会响应5000次左右。
这里我简单用两个主机,分别测试了一些数据
**主机1:**
> CPU个数:2个 , 内存: 2GB , 系统:Ubuntu18.04虚拟机
| 线程数 | QPS |
| ------ | ------ |
| 1 | 0.5w/s |
| 2 | 2.2w/s |
| 10 | 5.5w/s |
| 100 | 5.3w/s |
主机2:
> CPU个数: 24个 , 内存:128GB, 系统: 云主机
| 线程数 | QPS |
| ------ | ------ |
| 1 | 8.36w/s|
| 3 | 28.06w/s|
| 5 | 55.18w/s|
| 8 | 56.74w/s|
### 12.2 Lars模拟器系统测试
> Lars/api/cpp/example/simulator.cpp
```c
#include "lars_api.h"
#include <iostream>
#include <stdlib.h>
#include <time.h>
#include <map>
void usage()
{
printf("usage: ./simulator ModID CmdID [errRate(0-10)] [query cnt(0-999999)]\n");
}
int main(int argc, char **argv)
{
int ret = 0;
if (argc < 3) {
usage();
return 1;
}
int modid = atoi(argv[1]);
int cmdid = atoi(argv[2]);
int err_rate = 2;
int query_cnt = 100;
if (argc > 3) {
err_rate = atoi(argv[3]);
}
if (argc > 4) {
query_cnt = atoi(argv[4]);
}
lars_client api;
std::string ip;
int port;
//key---ip, value---<succ_cnt, err_cnt>
std::map<std::string, std::pair<int, int>> result;
std::cout << "err_rate = " << err_rate << std::endl;
//1. lars_api 初始化(只调用一次)
ret = api.reg_init(modid, cmdid);
if (ret != 0) {
std::cout << "modid " << modid << ", cmdid " << cmdid << " still not exist host, after register, ret = " << ret << std::endl;
}
srand(time(NULL));
for (int i = 0; i < query_cnt; i++) {
ret = api.get_host(modid, cmdid, ip, port);
if (ret == 0) {
//获取成功
if (result.find(ip) == result.end()) {
// 首次获取当前ip
std::pair<int ,int> succ_err(0, 0);
result[ip] = succ_err;
}
std::cout << "host " << ip << ":" << "host" << "called ";
if (rand()%10 < err_rate) {// 80%的几率产生调用失败
result[ip].second += 1;
api.report(modid, cmdid, ip, port, 1);
std::cout << " ERROR!!!" << std::endl;
}
else {
result[ip].first += 1;
api.report(modid, cmdid, ip, port, 0);
std::cout << " SUCCESS." << std::endl;
}
}
else if (ret == 3) {
std::cout << modid << "," << cmdid << " not exist" << std::endl;
}
else if (ret == 2) {
std::cout << "system err" << std::endl;
}
else if (ret == 1) {
std::cout << modid << "," << cmdid << " all hosts were overloaded!!!" << std::endl;
}
else {
std::cout << "get error code " << ret << std::endl;
}
usleep(6000);
}
//遍历结果
std::map<std::string, std::pair<int, int>>::iterator it;
for (it = result.begin(); it != result.end(); it ++) {
std::cout <<"ip : " << it->first << ": ";
std::cout <<"success: " << it->second.first << "; ";
std::cout <<"error: " << it->second.second << std::endl;
}
return 0;
}
```
### 12.3 get_host测试工具
> Lars/api/cpp/example/get_host.cpp
```c
#include "lars_api.h"
#include <iostream>
void usage()
{
printf("usage: ./get_host [modid] [cmdid]\n");
}
int main(int argc, char **argv)
{
int ret = 0;
if (argc != 3) {
usage();
return 1;
}
int modid = atoi(argv[1]);
int cmdid = atoi(argv[2]);
lars_client api;
std::string ip;
int port;
//1. lars_api 初始化(只调用一次)
ret = api.reg_init(modid, cmdid);
if (ret != 0) {
std::cout << "modid " << modid << ", cmdid " << cmdid << " still not exist host, after register, ret = " << ret << std::endl;
}
//2. 获取一个host的ip+port
ret = api.get_host(modid, cmdid, ip, port);
if (ret == 0) {
std::cout << "host is " << ip << ":" << port << std::endl;
}
return 0;
}
```
### 12.4 get_route测试工具
> Lars/api/cpp/example/get_route.cpp
```c
#include "lars_api.h"
#include <iostream>
void usage()
{
printf("usage: ./get_route [modid] [cmdid]\n");
}
int main(int argc, char **argv)
{
int ret = 0;
if (argc != 3) {
usage();
return 1;
}
int modid = atoi(argv[1]);
int cmdid = atoi(argv[2]);
lars_client api;
//1. lars_api 初始化(只调用一次)
ret = api.reg_init(modid, cmdid);
if (ret != 0) {
std::cout << "modid " << modid << ", cmdid " << cmdid << " still not exist host, after register, ret = " << ret << std::endl;
}
//2. 获取modid/cmdid下全部的host的ip+port
route_set route;
ret = api.get_route(modid, cmdid, route);
if (ret == 0) {
for (route_set_it it = route.begin(); it != route.end(); it++) {
std::cout << "ip = " << (*it).first << ", port = " << (*it).second << std::endl;
}
}
return 0;
}
```
### 12.5 reporter测试工具
> Lars/api/cpp/example/report.cpp
```c
#include "lars_api.h"
#include <iostream>
void usage()
{
printf("usage: ./report ModID CmdID IP Port 0|1 --- 0:succ, 1:overload \n");
}
int main(int argc, char **argv)
{
int ret = 0;
if (argc != 6) {
usage();
return 1;
}
int modid = atoi(argv[1]);
int cmdid = atoi(argv[2]);
std::string ip = argv[3];
int port = atoi(argv[4]);
int ret_code = atoi(argv[5]);
lars_client api;
//1. lars_api 初始化(只调用一次)
ret = api.reg_init(modid, cmdid);
if (ret != 0) {
std::cout << "modid " << modid << ", cmdid " << cmdid << " still not exist host, after register, ret = " << ret << std::endl;
}
api.report(modid, cmdid, ip, port, ret_code);
std::string result = (ret_code == 0)? "SUCC" :"OVERLOAD";
std::cout << "report modid = " << modid << ", cmdid = " << cmdid << " | " << ip << ":" << port << " " << result << std::endl;
return 0;
}
```
### FAQ
> init_succ = 180,err_rate = 0.1
> 而 : 10succ+21err 才过载,实际失败率并不是0.1啊?
答:
实际上,观察一组数据:
10succ+21err 过载 实际rate=67%
20succ+22err 过载 实际rate=50%
......
90succ + 30err 过载 实际rate=25%
......
200succ + 42err 过载,实际rate=17%
......
500succ + 75err 过载,实际rate=13%
即量越大越接近我们设定的=10%
而量越小,失败率更大才会导致过载
**这样的设计是很好的,因为量小的时候不应该武断的认为10%就过载,比如10succ+2err就会过载,才失败了两次,但是达到了10%,所以过载了,这是很不合理的**
我们的init_succ弄巧成拙的在这方面防止了这个情况(本来只想用他防止一上来就失败过载的情况)
---
### 关于作者:
作者:`Aceld(刘丹冰)`
mail: [danbing.at@gmail.com](mailto:danbing.at@gmail.com)
github: [https://github.com/aceld](https://github.com/aceld)
原创书籍: [https://www.kancloud.cn/@aceld](https://www.kancloud.cn/@aceld)
![](https://img.kancloud.cn/b0/d1/b0d11a21ba62e96aef1c11d5bfff2cf8_227x227.jpg)
>**原创声明:未经作者允许请勿转载, 如果转载请注明出处**
- 一、Lars系统概述
- 第1章-概述
- 第2章-项目目录构建
- 二、Reactor模型服务器框架
- 第1章-项目结构与V0.1雏形
- 第2章-内存管理与Buffer封装
- 第3章-事件触发EventLoop
- 第4章-链接与消息封装
- 第5章-Client客户端模型
- 第6章-连接管理及限制
- 第7章-消息业务路由分发机制
- 第8章-链接创建/销毁Hook机制
- 第9章-消息任务队列与线程池
- 第10章-配置文件读写功能
- 第11章-udp服务与客户端
- 第12章-数据传输协议protocol buffer
- 第13章-QPS性能测试
- 第14章-异步消息任务机制
- 第15章-链接属性设置功能
- 三、Lars系统之DNSService
- 第1章-Lars-dns简介
- 第2章-数据库创建
- 第3章-项目目录结构及环境构建
- 第4章-Route结构的定义
- 第5章-获取Route信息
- 第6章-Route订阅模式
- 第7章-Backend Thread实时监控
- 四、Lars系统之Report Service
- 第1章-项目概述-数据表及proto3协议定义
- 第2章-获取report上报数据
- 第3章-存储线程池及消息队列
- 五、Lars系统之LoadBalance Agent
- 第1章-项目概述及构建
- 第2章-主模块业务结构搭建
- 第3章-Report与Dns Client设计与实现
- 第4章-负载均衡模块基础设计
- 第5章-负载均衡获取Host主机信息API
- 第6章-负载均衡上报Host主机信息API
- 第7章-过期窗口清理与过载超时(V0.5)
- 第8章-定期拉取最新路由信息(V0.6)
- 第9章-负载均衡获取Route信息API(0.7)
- 第10章-API初始化接口(V0.8)
- 第11章-Lars Agent性能测试工具
- 第12章- Lars启动工具脚本