每隔一段时间需要调度任务执行,也许你想注册一个任务在客户端完成连接5分钟后执行,一个常见的用例是发送一个消息“你还活着?”到远端通,如果远端没有反应,则可以关闭通道(连接)和释放资源。
本节介绍使用强大的 EventLoop 实现任务调度,还会简单介绍 Java API的任务调度,以方便和 Netty 比较加深理解。
### [](https://github.com/waylau/essential-netty-in-action/blob/master/ADVANCED%20TOPICS/Scheduling%20tasks%20for%20later%20execution.md#使用普通的-java-api-调度任务)使用普通的 Java API 调度任务
在 Java 中使用 JDK 提供的 ScheduledExecutorService 实现任务调度。使用 Executors 提供的静态方法创建 ScheduledExecutorService,有如下方法
Table 15.1 java.util.concurrent.Executors-Static methods to create a ScheduledExecutorService
| 方法 | 描述 |
| --- | --- |
| newScheduledThreadPool(int corePoolSize) newScheduledThreadPool(int corePoolSize,ThreadFactorythreadFactory) | |
ScheduledThreadExecutorService 用于调度命令来延迟或者周期性的执行。 corePoolSize 用于计算线程的数量 newSingleThreadScheduledExecutor() newSingleThreadScheduledExecutor(ThreadFact orythreadFactory) | 新建一个 ScheduledThreadExecutorService 可以用于调度命令来延迟或者周期性的执行。它将使用一个线程来执行调度的任务
下面的 ScheduledExecutorService 调度任务 60 执行一次
Listing 15.4 Schedule task with a ScheduledExecutorService
~~~
ScheduledExecutorService executor = Executors
.newScheduledThreadPool(10); //1
ScheduledFuture<?> future = executor.schedule(
new Runnable() { //2
@Override
public void run() {
System.out.println("Now it is 60 seconds later"); //3
}
}, 60, TimeUnit.SECONDS); //4
// do something
//
executor.shutdown(); //5
~~~
1. 新建 ScheduledExecutorService 使用10个线程
2. 新建 runnable 调度执行
3. 稍后运行
4. 调度任务60秒后执行
5. 关闭 ScheduledExecutorService 来释放任务完成的资源
### [](https://github.com/waylau/essential-netty-in-action/blob/master/ADVANCED%20TOPICS/Scheduling%20tasks%20for%20later%20execution.md#使用-eventloop-调度任务)使用 EventLoop 调度任务
使用 ScheduledExecutorService 工作的很好,但是有局限性,比如在一个额外的线程中执行任务。如果需要执行很多任务,资源使用就会很严重;对于像 Netty 这样的高性能的网络框架来说,严重的资源使用是不能接受的。Netty 对这个问题提供了很好的方法。
Netty 允许使用 EventLoop 调度任务分配到通道,如下面代码:
Listing 15.5 Schedule task with EventLoop
~~~
Channel ch = null; // Get reference to channel
ScheduledFuture<?> future = ch.eventLoop().schedule(
new Runnable() {
@Override
public void run() {
System.out.println("Now its 60 seconds later");
}
}, 60, TimeUnit.SECONDS);
~~~
1. 新建 runnable 用于执行调度
2. 稍后执行
3. 调度任务60秒后运行
如果想任务每隔多少秒执行一次,看下面代码:
Listing 15.6 Schedule a fixed task with the EventLoop
~~~
Channel ch = null; // Get reference to channel
ScheduledFuture<?> future = ch.eventLoop().scheduleAtFixedRate(
new Runnable() {
@Override
public void run() {
System.out.println("Run every 60 seconds");
}
}, 60, 60, TimeUnit.SECONDS);
~~~
1. 新建 runnable 用于执行调度
2. 将运行直到 ScheduledFuture 被取消
3. 调度任务60秒运行
取消操作,可以使用 ScheduledFuture 返回每个异步操作。 ScheduledFuture 提供一个方法用于取消一个调度了的任务或者检查它的状态。一个简单的取消操作如下:
~~~
ScheduledFuture<?> future = ch.eventLoop()
.scheduleAtFixedRate(..); //1
// Some other code that runs...
future.cancel(false); //2
~~~
1. 调度任务并获取返回的 ScheduledFuture
2. 取消任务,阻止它再次运行
### [](https://github.com/waylau/essential-netty-in-action/blob/master/ADVANCED%20TOPICS/Scheduling%20tasks%20for%20later%20execution.md#调度的内部实现)调度的内部实现
Netty 内部实现其实是基于George Varghese 提出的 “Hashed and hierarchical timing wheels: Data structures to efficiently implement timer facility(散列和分层定时轮:数据结构有效实现定时器)”。这种实现只保证一个近似执行,也就是说任务的执行可能不是100%准确;在实践中,这已经被证明是一个可容忍的限制,不影响多数应用程序。所以,定时执行任务不可能100%准确的按时执行。
为了更好的理解它是如何工作,我们可以这样认为:
* 在指定的延迟时间后调度任务;
* 任务被插入到 EventLoop 的 Schedule-Task-Queue(调度任务队列);
* 如果任务需要马上执行,EventLoop 检查每个运行;
* 如果有一个任务要执行,EventLoop 将立刻执行它,并从队列中删除;
* EventLoop 等待下一次运行,从第4步开始一遍又一遍的重复。
因为这样的实现计划执行不可能100%正确,对于多数用例不可能100%准备的执行计划任务;在 Netty 中,这样的工作几乎没有资源开销。
但是如果需要更准确的执行呢?很容易,你需要使用ScheduledExecutorService 的另一个实现,这不是 Netty 的内容。记住,如果不遵循 Netty 的线程模型协议,你将需要自己同步并发访问。
- Introduction
- 开始
- Netty-异步和数据驱动
- Netty 介绍
- 构成部分
- 关于本书
- 第一个 Netty 应用
- 设置开发环境
- Netty 客户端/服务端 总览
- 写一个 echo 服务器
- 写一个 echo 客户端
- 编译和运行 Echo 服务器和客户端
- 总结
- Netty 总览
- Netty 快速入门
- Channel, Event 和 I/O
- 什么是 Bootstrapping 为什么要用
- ChannelHandler 和 ChannelPipeline
- 近距离观察 ChannelHandler
- 总结
- 核心功能
- Transport(传输)
- 案例研究:Transport 的迁移
- Transport API
- 包含的 Transport
- Transport 使用情况
- 总结
- Buffer(缓冲)
- Buffer API
- ByteBuf - 字节数据的容器
- 字节级别的操作
- ByteBufHolder
- ByteBuf 分配
- 总结
- ChannelHandler 和 ChannelPipeline
- ChannelHandler 家族
- ChannelPipeline
- ChannelHandlerContext
- 总结
- Codec 框架
- 什么是 Codec
- Decoder(解码器)
- Encoder(编码器)
- 抽象 Codec(编解码器)类
- 总结
- 提供了的 ChannelHandler 和 Codec
- 使用 SSL/TLS 加密 Netty 程序
- 构建 Netty HTTP/HTTPS 应用
- 空闲连接以及超时
- 解码分隔符和基于长度的协议
- 编写大型数据
- 序列化数据
- 总结
- Bootstrap 类型
- 引导客户端和无连接协议
- 引导服务器
- 从 Channel 引导客户端
- 在一个引导中添加多个 ChannelHandler
- 使用Netty 的 ChannelOption 和属性
- 关闭之前已经引导的客户端或服务器
- 总结
- 引导
- Bootstrap 类型
- 引导客户端和无连接协议
- 引导服务器
- 从 Channel 引导客户端
- 在一个引导中添加多个 ChannelHandler
- 使用Netty 的 ChannelOption 和属性
- 关闭之前已经引导的客户端或服务器
- 总结
- NETTY BY EXAMPLE
- 单元测试
- 总览
- 测试 ChannelHandler
- 测试异常处理
- 总结
- WebSocket
- WebSocket 程序示例
- 添加 WebSocket 支持
- 测试程序
- 总结
- SPDY
- SPDY 背景
- 示例程序
- 实现
- 启动 SpdyServer 并测试
- 总结
- 通过 UDP 广播事件
- UDP 基础
- UDP 广播
- UDP 示例
- EventLog 的 POJO
- 写广播器
- 写监视器
- 运行 LogEventBroadcaster 和 LogEventMonitor
- 总结
- 高级主题
- 实现自定义的编解码器
- 编解码器的范围
- 实现 Memcached 编解码器
- 了解 Memcached 二进制协议
- Netty 编码器和解码器
- 测试编解码器
- EventLoop 和线程模型
- 线程模型的总览
- EventLoop
- EventLoop
- I/O EventLoop/Thread 分配细节
- 总结
- 用例1:Droplr Firebase 和 Urban Airship
- 用例2:Facebook 和 Twitter