1. 命令介绍
由图4-1的介绍可知,WPAS对外通过控制接口模块与客户端通信。在Android平台中,WPAS的客户端是位于Framework中的WifiService。用户在Settings界面进行Wi-Fi相关的操作最终都会经由WifiService通过发送命令的方式转交给wpa_supplicant去执行。
WPAS定义了许多命令,常见的:
* **PING**:心跳检测命令。客户端用它判断WPAS是否工作正常。WPAS收到”PING”命令后需要回复“PONG”。
* **MIB**:客户端用该命令获取设备的MIB信息。
* **STATUS**:客户端用该命令来获取WPAS的工作状态。
* **ADD_NETWORK**:为WPAS添加一个新的无线网络。它将返回此新无线网络的id(从0开始)。注意:此network id非常重要,客户端后续将通过它来指明自己想操作的无线网络。
* **SET_NETWORK** `<network id> <variable> <value>`:network id是无线网络的id。此命令用于设置指定无线网络的信息。其中variable为参数名,value为参数的值。
* **ENABLE_NETWORK** `<network id>`:使能某个无线网络。此命令最终将促使WPAS发起一系列操作以加入该无线网络。
除了接收来自Client的命令外,WPAS也会主动给Client发送命令。例如,WPAS需用户为某个无线网络输入密码。这类命令称之为Interactive Request,其格式如下。
WPAS向客户端发送的命令遵循以下格式:
`CTRL-REQ-<field name>-<network id>-<human readable text>`格式。
如CTRL-REQ-PASSWORD-0-Passwork needed for SSID test-network。这条命令表示需要用户为0号网络输入密码。
客户端处理完后,需回复`CTRL-RSP-<field name>-<network id>-<value>`。
目前支持的field包括PASSWORD、IDENTITY(EAP中的identity或者用户名)、PIN等。
最后,WPAS还可通过形如“`CTRL-EVENT-<field>-<text>`”的命令向客户端通知一些事情。
**提示**:除了“CTRL-EVENT-XXX”之外,WPAS还支持形如“WPA:XXX”和“WPS-XXX”的通知事件。这些事件和WPA和WPS有关。下一章分析WifiService时我们还能见到它们。
图4-2所示为笔者利用wpa_cli测试status命令得到的结果。
:-: ![](http://img.blog.csdn.net/20140309205109171?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvSW5ub3N0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
图4-2 wpa_cli命令测试示意
图4-2所示为status命令的结果。图中最后几行显示WPAS向wpa_cli返回了两个CTRL-EVENT信息。
2. 控制API介绍
Android平台中WifiService是WPAS的客户端,它和WPAS交互时必须使用wpa_supplicant提供的API。这些API声明于wpa_ctrl.h中,其用法如下:
~~~
//必须包含此头文件,链接时需包含libwpa_client.so动态库
#include “wpa_ctrl.h”
~~~
客户端使用wpa_ctrl时首先要分配控制对象。下面两个API用于创建和销毁控制对象wpa_ctrl:
~~~
//创建一个wpa控制端对象wpa_ctrl。Android平台中,参数ctrl_path代表unix域socket的位置
struct wpa_ctrl * wpa_ctrl_open(const char *ctrl_path);
void wpa_ctrl_close(struct wpa_ctrl *ctrl);//注销wpa_ctrl控制对象
~~~
下面这个函数用于发送命令给WPAS。
~~~
//客户端发送命令给wpa_supplicant,回复的消息保存在reply中
int wpa_ctrl_request(struct wpa_ctrl *ctrl, const char *cmd, size_t cmd_len,
char *reply, size_t *reply_len,void (*msg_cb)(char *msg, size_t len));
~~~
msg_cb是一个回调函数,该参数的设置和WPAS中C/S通信机制的设计有关:
从Client角度来看,它发送给WPAS的命令所对应的回复属于solicited event(意为有请求的事件),而前面所提到的CTRL-EVENT事件(用于通知事件)对应为unsolicited event(意为未请求的事件)。当Client在等待某个命令的回复时,WPAS同时可能有些通知事件要发送给客户端,这些通知事件不是该命令的回复,所以不能通过wpa_ctrl_request的reply参数返回。
为了防止丢失这些通知事件,wpa_cli设计了一个msg_cb回调用于客户端在等待命令回复的时候处理那些unsolicited event。
这种一个函数完成两样完全不同的功能的设计实在有些特别,所以wpa_supplicant规定只有打开通知事件监听功能的wpa_ctrl对象才能在wpa_ctrl_request中通过msg_cb获取通知事件。而打开通知事件监听功能相关的API如下所示。
~~~
//打开通知事件监听功能
int wpa_ctrl_attach(struct wpa_ctrl *ctrl);
//打开通知事件监听功能的wpa_ctrl对象能直接调用下面的函数来接收unsolicited event
int wpa_ctrl_recv(struct wpa_ctrl *ctrl, char *reply, size_t *reply_len);
~~~
如果客户端并不发送命令,而只是想接收Unsolicited event的话,可通过wpa_ctrl_recv函数来达到此目的。
综上所述,单独使用wpa_ctrl_recv和wpa_ctrl_request都不方便。所以,一种常见的用法是:客户端创建两个wpa_ctrl对象来简化自己的逻辑处理:
* 一个打开了通知事件监听功能的wpa_ctrl对象将只通过wpa_ctrl_recv来接收通知事件。
* 另外一个wpa_ctrl专职用于发送命令和接收回复。由于没有调用wpa_ctrl_attach,故它不会收到通知事件。
**提示**:下一章分析WifiService时将见到这种创建两个wpa_ctrl对象的做法。
- 前言
- 第1章 准备工作
- 1.1 Android系统架构
- 1.2 工具使用
- 1.2.1 Source Insight的使用
- 1.2.2 Eclipse的使用
- 1.2.3 BusyBox的使用
- 1.3 本书资源下载说明
- 第2章 深入理解Netd
- 2.1 概述
- 2.2 Netd工作流程
- 2.2.1 main函数分析
- 2.2.2 NetlinkManager分析
- 2.2.3 CommandListener分析
- 2.2.4 DnsProxyListener分析
- 2.2.5 MDnsSdListener分析
- 2.3 CommandListener中的命令
- 2.3.1 iptables、tc和ip命令
- 2.3.2 CommandListener构造函数和测试工具ndc
- 2.3.3 InterfaceCmd命令
- 2.3.4 IpFwd和FirewallCmd命令
- 2.3.5 ListTtysCmd和PppdCmd命令
- 2.3.6 BandwidthControlCmd和IdletimerControlCmd命令
- 2.3.7 NatCmd命令
- 2.3.8 TetherCmd和SoftapCmd命令
- 2.3.9 ResolverCmd命令
- 2.4 NetworkManagementService介绍
- 2.4.1 create函数详解
- 2.4.2 systemReady函数详解
- 2.5 本章总结和参考资料说明
- 2.5.1 本章总结
- 2.5.2 参考资料说明
- 第3章 Wi-Fi基础知识
- 3.1 概述
- 3.2 无线电频谱和802.11协议的发展历程
- 3.2.1 无线电频谱知识
- 3.2.2 IEEE 802.11发展历程
- 3.3 802.11无线网络技术
- 3.3.1 OSI基本参考模型及相关基本概念
- 3.3.2 802.11知识点导读
- 3.3.3 802.11组件
- 3.3.4 802.11 Service介绍
- 3.3.5 802.11 MAC服务和帧
- 3.3.6 802.11 MAC管理实体
- 3.3.7 无线网络安全技术知识点
- 3.4 Linux Wi-Fi编程API介绍
- 3.4.1 Linux Wireless Extensions介绍
- 3.4.2 nl80211介绍
- 3.5 本章总结和参考资料说明
- 3.5.1 本章总结
- 3.5.2 参考资料说明
- 第4章 深入理解wpa_supplicant
- 4.1 概述
- 4.2 初识wpa_supplicant
- 4.2.1 wpa_supplicant架构
- 4.2.2 wpa_supplicant编译配置
- 4.2.3 wpa_supplicant命令和控制API
- 4.2.4 git的使用
- 4.3 wpa_supplicant初始化流程
- 4.3.1 main函数分析
- 4.3.2 wpa_supplicant_init函数分析
- 4.3.3 wpa_supplicant_add_iface函数分析
- 4.3.4 wpa_supplicant_init_iface函数分析
- 4.4 EAP和EAPOL模块
- 4.4.1 EAP模块分析
- 4.4.2 EAPOL模块分析
- 4.5 wpa_supplicant连接无线网络分析
- 4.5.1 ADD_NETWORK命令处理
- 4.5.2 SET_NETWORK命令处理
- 4.5.3 ENABLE_NETWORK命令处理
- 4.6 本章总结和参考资料说明
- 4.6.1 本章总结
- 4.6.2 参考资料说明
- 第5章 深入理解WifiService
- 5.1 概述
- 5.2 WifiService的创建及初始化
- 5.2.1 HSM和AsyncChannel介绍
- 5.2.2 WifiService构造函数分析
- 5.2.3 WifiStateMachine介绍
- 5.3 加入无线网络分析
- 5.3.1 Settings操作Wi-Fi分析
- 5.3.2 WifiService操作Wi-Fi分析
- 5.4 WifiWatchdogStateMachine介绍
- 5.5 Captive Portal Check介绍
- 5.6 本章总结和参考资料说明
- 5.6.1 本章总结
- 5.6.2 参考资料说明
- 第6章 深入理解Wi-Fi Simple Configuration
- 6.1 概述
- 6.2 WSC基础知识
- 6.2.1 WSC应用场景
- 6.2.2 WSC核心组件及接口
- 6.3 Registration Protocol详解
- 6.3.1 WSC IE和Attribute介绍
- 6.3.2 802.11管理帧WSC IE设置
- 6.3.3 EAP-WSC介绍
- 6.4 WSC代码分析
- 6.4.1 Settings中的WSC处理
- 6.4.2 WifiStateMachine的处理
- 6.4.3 wpa_supplicant中的WSC处理
- 6.4.4 EAP-WSC处理流程分析
- 6.5 本章总结和参考资料说明
- 6.5.1 本章总结
- 6.5.2 参考资料说明
- 第7章 深入理解Wi-Fi P2P
- 7.1 概述
- 7.2 P2P基础知识
- 7.2.1 P2P架构
- 7.2.2 P2P Discovery技术
- 7.2.3 P2P工作流程
- 7.3 WifiP2pSettings和WifiP2pService介绍
- 7.3.1 WifiP2pSettings工作流程
- 7.3.2 WifiP2pService工作流程
- 7.4 wpa_supplicant中的P2P
- 7.4.1 P2P模块初始化
- 7.4.2 P2P Device Discovery流程分析
- 7.4.3 Provision Discovery流程分析
- 7.4.4 GO Negotiation流程分析
- 7.5 本章总结和参考资料说明
- 7.5.1 本章总结
- 7.5.2 参考资料说明
- 第8章 深入理解NFC
- 8.1 概述
- 8.2 NFC基础知识
- 8.2.1 NFC概述
- 8.2.2 NFC R/W运行模式
- 8.2.3 NFC P2P运行模式
- 8.2.4 NFC CE运行模式
- 8.2.5 NCI原理
- 8.2.6 NFC相关规范
- 8.3 Android中的NFC
- 8.3.1 NFC应用示例
- 8.3.2 NFC系统模块
- 8.4 NFC HAL层讨论
- 8.5 本章总结和参考资料说明
- 8.5.1 本章总结
- 8.5.2 参考资料说明
- 第9章 深入理解GPS
- 9.1 概述
- 9.2 GPS基础知识
- 9.2.1 卫星导航基本原理
- 9.2.2 GPS系统组成及原理
- 9.2.3 OMA-SUPL协议
- 9.3 Android中的位置管理
- 9.3.1 LocationManager架构
- 9.3.2 LocationManager应用示例
- 9.3.3 LocationManager系统模块
- 9.4 本章总结和参考资料说明
- 9.4.1 本章总结
- 9.4.2 参考资料说明
- 附录