Android 4.2中,Captive Portal Check功能集中在CaptivePortalTracker类中,而且它也是一个HSM。CaptivePortalTracker的创建位于ConnectivityService构造函数中。在那里,它的makeCaptivePortalTracker函数被调用。相关代码如下所示:
**CaptivePortalTracker.java::makeCaptivePortalTracker**
~~~
public static CaptivePortalTracker makeCaptivePortalTracker(Context context,
IConnectivityManager cs) {
CaptivePortalTracker captivePortal = new CaptivePortalTracker(context, cs);
captivePortal.start();//启动HSM
return captivePortal;
}
~~~
马上来看CaptivePortalTracker的构造函数
**1、CaptivePortalTracker构造函数分析**
**CaptivePortalTracker.java::CaptivePortalTracker**
~~~
private CaptivePortalTracker(Context context, IConnectivityManager cs) {
super(TAG);
mContext = context;mConnService = cs;
mTelephonyManager = (TelephonyManager) context.getSystemService(
Context.TELEPHONY_SERVICE);
//注册一个广播接收对象,用于处理CONNECTIVITY_ACTION消息
IntentFilter filter = new IntentFilter();
filter.addAction(ConnectivityManager.CONNECTIVITY_ACTION);
mContext.registerReceiver(mReceiver, filter);
//CAPTIVE_PORTAL_SERVER用于设置进行Captive Portal Check测试的服务器地址
mServer = Settings.Global.getString(mContext.getContentResolver(),
Settings.Global.CAPTIVE_PORTAL_SERVER);
//如果没有指明服务器地址的,则采用DEFAULT_SERVER,其地址是“clients3.google.com”
if (mServer == null) mServer = DEFAULT_SERVER;
//是否开启Captive Portal Check功能,默认是开始
mIsCaptivePortalCheckEnabled = Settings.Global.getInt(mContext.getContentResolver(),
Settings.Global.CAPTIVE_PORTAL_DETECTION_ENABLED, 1) == 1;
addState(mDefaultState);//CaptivePortalTracker只有4个状态
addState(mNoActiveNetworkState, mDefaultState);
addState(mActiveNetworkState, mDefaultState);
addState(mDelayedCaptiveCheckState, mActiveNetworkState);
setInitialState(mNoActiveNetworkState);
}
~~~
CaptivePortalTracker只监听CONNECTIVITY_ACTION广播,而WifiService相关模块并不会发送这个广播。那么,在前面介绍的流程中,哪一步会触发CaptivePortalTracker进行工作呢?来看下节。
**2、CMD_CONNECTIVITY_CHANGE处理流程分析**
当Wifi网络连接成功时,ConnectivityService的handleConnect将被触发,该函数内部将发送一个CONNECTIVITY_ACTION消息。这个消息将被CaptivePortalTracker注册的广播接收对象处理。相关代码如下所示:
**CaptivePortalTracker.java::onReceive**
~~~
private final BroadcastReceiver mReceiver = new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
String action = intent.getAction();
if (action.equals(ConnectivityManager.CONNECTIVITY_ACTION)) {
NetworkInfo info = intent.getParcelableExtra(
ConnectivityManager.EXTRA_NETWORK_INFO);
//向状态机发送CMD_CONNECTIVITY_CHANGE消息
sendMessage(obtainMessage(CMD_CONNECTIVITY_CHANGE, info));
}
}
};
~~~
CaptivePortalTracker的NoActiveNetworkState将处理该消息。相关代码如下所示:
**CaptivePortalTracker.java::NoActiveNetworkState:processMessage**
~~~
public boolean processMessage(Message message) {
InetAddress server; NetworkInfo info;
switch (message.what) {
case CMD_CONNECTIVITY_CHANGE:
info = (NetworkInfo) message.obj;
//无线网络已经连接成功,并且手机当前使用的就是Wifi。isActiveNetwork将查询
//ConnectivityService以获取当前活跃的数据链接类型
if (info.isConnected() && isActiveNetwork(info)) {
mNetworkInfo = info;
transitionTo(mDelayedCaptiveCheckState);//转移到DelayedCaptiveCheckState
}
......
}
return HANDLED;
}
~~~
来看DelayedCaptiveCheckState。
**3、CMD_DELAYED_CAPTIVE_CHECK处理流程分析**
代码如下所示:
**CaptivePortalTracker.java::DelayedCaptiveCheckState**
~~~
private class DelayedCaptiveCheckState extends State {
public void enter() {
//发送一个延迟消息,延迟时间为10秒
sendMessageDelayed(obtainMessage(CMD_DELAYED_CAPTIVE_CHECK,
++mDelayedCheckToken, 0), DELAYED_CHECK_INTERVAL_MS);
}
public boolean processMessage(Message message) {
switch (message.what) {
case CMD_DELAYED_CAPTIVE_CHECK:
if (message.arg1 == mDelayedCheckToken) {
InetAddress server = lookupHost(mServer);//获取Server的ip地址
if (server != null) {
//AP是否需要Captive Portal Check。如果是的话,setNotificiationVisible
//将在状态栏中添加一个提醒信息
if (isCaptivePortal(server)) setNotificationVisible(true);
}
transitionTo(mActiveNetworkState);//转到ActiveNetworkState
}
break;
default:
return NOT_HANDLED;
}
return HANDLED;
}
}
~~~
上述代码中,isCaptivePortal用于判断server是否需要Captive Portal Check。其代码如下所示:
**CaptivePortalTracker.java::isCaptivePortal**
~~~
private boolean isCaptivePortal(InetAddress server) {
HttpURLConnection urlConnection = null;
if (!mIsCaptivePortalCheckEnabled) return false;
//mUrl实际访问的地址是:http://clients3.google.com/generate_204
mUrl = "http://" + server.getHostAddress() + "/generate_204";
/*
Captive Portal的测试非常简单,就是向mUrl发送一个HTTP GET请求。如果无线网络提供商没有设置Portal
Check,则HTTP GET请求将返回204。204表示请求处理成功,但没有数据返回。如果无线网络提供商设置了
Portal Check,则它一定会重定向到某个特定网页。这样,HTTP GET的返回值就不是204
*/
try {
URL url = new URL(mUrl);
urlConnection = (HttpURLConnection) url.openConnection();
urlConnection.setInstanceFollowRedirects(false);
urlConnection.setConnectTimeout(SOCKET_TIMEOUT_MS);
urlConnection.setReadTimeout(SOCKET_TIMEOUT_MS);
urlConnection.setUseCaches(false);
urlConnection.getInputStream();
return urlConnection.getResponseCode() != 204;
}......
}
~~~
处理完毕后,CaptivePortalTracker将转入ActiveNetworkState状态。该状态的内容非常简单,读者可自行阅读它。由于笔者家中所在小区宽带提供商使用了Capive Portal Check,所以笔者利用AirPcap截获了相关网络交换数据,如图5-8所示:
:-: ![](http://img.blog.csdn.net/20140309211006531?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvSW5ub3N0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
图5-8 Captive Portal Check示意图
测试时,笔者禁用了无线网络安全,所以AirPcap可以解析这些没有加密的数据包。由图5-8可知,当笔者的Note 2发起HTTP GET请求后,小区宽带服务器回复了HTTP 302,所以笔者手机状态栏才会显然如图5-9所示的提示项以提醒笔者该无线网络需要登录。
:-: ![](http://img.blog.csdn.net/20140309211102218?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvSW5ub3N0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
图5-9 Captive Portal Check提示示意图
**4、CaptivePortalTracker总结和讨论**
和WifiWatchdogStateMachine一样,CaptivePortalTracker也比较有意思。CaptivePortalTracker类出现于4.2中。而4.1中的Captive Portacl Check功能则是由WifiWatchdogStateMachin来完成的。在4.1中,WifiWatchdogStateMachine定义了一个名为WalledGardenCheckState的类用于处理Captive Portal Check。
不过,笔者在研究4.1和4.2相关模块的代码后,发现4.2中的处理似乎有一些问题。此处先记下此问题,希望有兴趣的读者参与讨论。该问题如下:
* * * * *
4.2中,WifiStateMachine在ConnectedState前增加了一个CaptivePortalCheckState。很明显,CaptivePortalCheckState的目的是在WifiStateMachine转入ConnectedState之前完成Captive Portal Check。但根据本节对CaptivePortalTracker的介绍,只有WifiStateMachine进入ConnectedState后,ConnectivityService才会发送CONNECTIVITY_ACTION广播。而在4.1中,WifiWatchdogStateMachine也是在WifiStateMachine转入ConnectedState后进入WalledGardenCheckState的。
* * * * *
>[info] 提示:那么,WifiStateMachine如何从CaptivePortalCheckState转为ConnectedState呢?
>
> 答案在ConnectivityService的handleCaptivePortalTrackerCheck函数中。在那里,WifiStateMachine的captivePortalCheckComplete函数最终会被调用。在那个函数中,CMD_CAPTIVE_CHECK_COMPLETE将被发送,故CaptivePortalCheckState才会转入ConnectedState状态。但是,在这个流程中,CaptivePortalTracker并未被真正触发以进行Captive Portal Check。
- 前言
- 第1章 准备工作
- 1.1 Android系统架构
- 1.2 工具使用
- 1.2.1 Source Insight的使用
- 1.2.2 Eclipse的使用
- 1.2.3 BusyBox的使用
- 1.3 本书资源下载说明
- 第2章 深入理解Netd
- 2.1 概述
- 2.2 Netd工作流程
- 2.2.1 main函数分析
- 2.2.2 NetlinkManager分析
- 2.2.3 CommandListener分析
- 2.2.4 DnsProxyListener分析
- 2.2.5 MDnsSdListener分析
- 2.3 CommandListener中的命令
- 2.3.1 iptables、tc和ip命令
- 2.3.2 CommandListener构造函数和测试工具ndc
- 2.3.3 InterfaceCmd命令
- 2.3.4 IpFwd和FirewallCmd命令
- 2.3.5 ListTtysCmd和PppdCmd命令
- 2.3.6 BandwidthControlCmd和IdletimerControlCmd命令
- 2.3.7 NatCmd命令
- 2.3.8 TetherCmd和SoftapCmd命令
- 2.3.9 ResolverCmd命令
- 2.4 NetworkManagementService介绍
- 2.4.1 create函数详解
- 2.4.2 systemReady函数详解
- 2.5 本章总结和参考资料说明
- 2.5.1 本章总结
- 2.5.2 参考资料说明
- 第3章 Wi-Fi基础知识
- 3.1 概述
- 3.2 无线电频谱和802.11协议的发展历程
- 3.2.1 无线电频谱知识
- 3.2.2 IEEE 802.11发展历程
- 3.3 802.11无线网络技术
- 3.3.1 OSI基本参考模型及相关基本概念
- 3.3.2 802.11知识点导读
- 3.3.3 802.11组件
- 3.3.4 802.11 Service介绍
- 3.3.5 802.11 MAC服务和帧
- 3.3.6 802.11 MAC管理实体
- 3.3.7 无线网络安全技术知识点
- 3.4 Linux Wi-Fi编程API介绍
- 3.4.1 Linux Wireless Extensions介绍
- 3.4.2 nl80211介绍
- 3.5 本章总结和参考资料说明
- 3.5.1 本章总结
- 3.5.2 参考资料说明
- 第4章 深入理解wpa_supplicant
- 4.1 概述
- 4.2 初识wpa_supplicant
- 4.2.1 wpa_supplicant架构
- 4.2.2 wpa_supplicant编译配置
- 4.2.3 wpa_supplicant命令和控制API
- 4.2.4 git的使用
- 4.3 wpa_supplicant初始化流程
- 4.3.1 main函数分析
- 4.3.2 wpa_supplicant_init函数分析
- 4.3.3 wpa_supplicant_add_iface函数分析
- 4.3.4 wpa_supplicant_init_iface函数分析
- 4.4 EAP和EAPOL模块
- 4.4.1 EAP模块分析
- 4.4.2 EAPOL模块分析
- 4.5 wpa_supplicant连接无线网络分析
- 4.5.1 ADD_NETWORK命令处理
- 4.5.2 SET_NETWORK命令处理
- 4.5.3 ENABLE_NETWORK命令处理
- 4.6 本章总结和参考资料说明
- 4.6.1 本章总结
- 4.6.2 参考资料说明
- 第5章 深入理解WifiService
- 5.1 概述
- 5.2 WifiService的创建及初始化
- 5.2.1 HSM和AsyncChannel介绍
- 5.2.2 WifiService构造函数分析
- 5.2.3 WifiStateMachine介绍
- 5.3 加入无线网络分析
- 5.3.1 Settings操作Wi-Fi分析
- 5.3.2 WifiService操作Wi-Fi分析
- 5.4 WifiWatchdogStateMachine介绍
- 5.5 Captive Portal Check介绍
- 5.6 本章总结和参考资料说明
- 5.6.1 本章总结
- 5.6.2 参考资料说明
- 第6章 深入理解Wi-Fi Simple Configuration
- 6.1 概述
- 6.2 WSC基础知识
- 6.2.1 WSC应用场景
- 6.2.2 WSC核心组件及接口
- 6.3 Registration Protocol详解
- 6.3.1 WSC IE和Attribute介绍
- 6.3.2 802.11管理帧WSC IE设置
- 6.3.3 EAP-WSC介绍
- 6.4 WSC代码分析
- 6.4.1 Settings中的WSC处理
- 6.4.2 WifiStateMachine的处理
- 6.4.3 wpa_supplicant中的WSC处理
- 6.4.4 EAP-WSC处理流程分析
- 6.5 本章总结和参考资料说明
- 6.5.1 本章总结
- 6.5.2 参考资料说明
- 第7章 深入理解Wi-Fi P2P
- 7.1 概述
- 7.2 P2P基础知识
- 7.2.1 P2P架构
- 7.2.2 P2P Discovery技术
- 7.2.3 P2P工作流程
- 7.3 WifiP2pSettings和WifiP2pService介绍
- 7.3.1 WifiP2pSettings工作流程
- 7.3.2 WifiP2pService工作流程
- 7.4 wpa_supplicant中的P2P
- 7.4.1 P2P模块初始化
- 7.4.2 P2P Device Discovery流程分析
- 7.4.3 Provision Discovery流程分析
- 7.4.4 GO Negotiation流程分析
- 7.5 本章总结和参考资料说明
- 7.5.1 本章总结
- 7.5.2 参考资料说明
- 第8章 深入理解NFC
- 8.1 概述
- 8.2 NFC基础知识
- 8.2.1 NFC概述
- 8.2.2 NFC R/W运行模式
- 8.2.3 NFC P2P运行模式
- 8.2.4 NFC CE运行模式
- 8.2.5 NCI原理
- 8.2.6 NFC相关规范
- 8.3 Android中的NFC
- 8.3.1 NFC应用示例
- 8.3.2 NFC系统模块
- 8.4 NFC HAL层讨论
- 8.5 本章总结和参考资料说明
- 8.5.1 本章总结
- 8.5.2 参考资料说明
- 第9章 深入理解GPS
- 9.1 概述
- 9.2 GPS基础知识
- 9.2.1 卫星导航基本原理
- 9.2.2 GPS系统组成及原理
- 9.2.3 OMA-SUPL协议
- 9.3 Android中的位置管理
- 9.3.1 LocationManager架构
- 9.3.2 LocationManager应用示例
- 9.3.3 LocationManager系统模块
- 9.4 本章总结和参考资料说明
- 9.4.1 本章总结
- 9.4.2 参考资料说明
- 附录