# 1.7。用@jitclass 编译 python 类
> 原文: [http://numba.pydata.org/numba-doc/latest/user/jitclass.html](http://numba.pydata.org/numba-doc/latest/user/jitclass.html)
注意
这是 jitclass 支持的早期版本。并非所有编译功能都已公开或实现。
Numba 通过 [`numba.jitclass()`](#numba.jitclass "numba.jitclass") 装饰器支持类的代码生成。可以使用此装饰器标记类以进行优化,同时指定每个字段的类型。我们将生成的类对象称为 jitclass。 jitclass 的所有方法都被编译成 nopython 函数。 jitclass 实例的数据在堆上作为 C 兼容结构分配,以便任何已编译的函数可以绕过解释器直接访问底层数据。
## 1.7.1。基本用法
这是一个 jitclass 的例子:
```py
import numpy as np
from numba import jitclass # import the decorator
from numba import int32, float32 # import the types
spec = [
('value', int32), # a simple scalar field
('array', float32[:]), # an array field
]
@jitclass(spec)
class Bag(object):
def __init__(self, value):
self.value = value
self.array = np.zeros(value, dtype=np.float32)
@property
def size(self):
return self.array.size
def increment(self, val):
for i in range(self.size):
self.array[i] = val
return self.array
```
(参见源代码树中 <cite>examples / jitclass.py</cite> 的完整示例)
在上面的例子中,`spec`被提供为 2 元组的列表。元组包含字段的名称和字段的 numba 类型。或者,用户可以使用字典(`OrderedDict`优选地用于稳定字段排序),其将字段名称映射到类型。
该类的定义至少需要一个`__init__`方法来初始化每个定义的字段。未初始化的字段包含垃圾数据。可以定义方法和属性(仅限 getter 和 setter)。它们将自动编译。
## 1.7.2。支持操作
jitclasses 的以下操作在解释器和 numba 编译函数中都有效:
* 调用 jitclass 类对象来构造一个新实例(例如`mybag = Bag(123)`);
* 对属性和属性的读/写访问(例如`mybag.value`);
* 调用方法(例如`mybag.increment(3)`);
在 numba 编译函数中使用 jitclasses 更有效。可以内联简短方法(由 LLVM inliner 决定)。属性访问只是从 C 结构中读取。使用来自 intpreter 的 jitclasses 具有从解释器调用任何 numba 编译函数的相同开销。参数和返回值必须在 python 对象和本机表示之间取消装箱或装箱。当 jitclass 实例传递给解释器时,由 jitclass 封装的值不会被装入 python 对象。在对字段值的属性访问期间,它们被装箱。
## 1.7.3。限制
* jitclass 类对象被视为 numba 编译函数内的函数(构造函数)。
* `isinstance()`仅适用于口译员。
* 尚未优化在解释器中操作 jitclass 实例。
* 仅在 CPU 上提供对 jitclasses 的支持。 (注意:计划在将来的版本中支持 GPU 设备。)
## 1.7.4。装饰者:`@jitclass`
```py
numba.jitclass(spec)
```
用于创建 jitclass 的装饰器。
**参数**:
* ```py
spec:
```
指定此类中每个字段的类型。必须是字典或序列。使用字典,使用 collections.OrderedDict 进行稳定排序。对于序列,它必须包含 2 元组(fieldname,fieldtype)。
**返回**:
一个可调用的,它接受一个将被编译的类对象。
- 1. 用户手册
- 1.1。 Numba 的约 5 分钟指南
- 1.2。概述
- 1.3。安装
- 1.4。使用@jit 编译 Python 代码
- 1.5。使用@generated_jit 进行灵活的专业化
- 1.6。创建 Numpy 通用函数
- 1.7。用@jitclass 编译 python 类
- 1.8。使用@cfunc 创建 C 回调
- 1.9。提前编译代码
- 1.10。使用@jit 自动并行化
- 1.11。使用@stencil装饰器
- 1.12。从 JIT 代码 中回调到 Python 解释器
- 1.13。性能提示
- 1.14。线程层
- 1.15。故障排除和提示
- 1.16。常见问题
- 1.17。示例
- 1.18。会谈和教程
- 2. 参考手册
- 2.1。类型和签名
- 2.2。即时编译
- 2.3。提前编译
- 2.4。公用事业
- 2.5。环境变量
- 2.6。支持的 Python 功能
- 2.7。支持的 NumPy 功能
- 2.8。与 Python 语义的偏差
- 2.9。浮点陷阱
- 2.10。 Python 2.7 寿命终止计划
- 3. 用于 CUDA GPU 的 Numba
- 3.1。概述
- 3.2。编写 CUDA 内核
- 3.3。内存管理
- 3.4。编写设备功能
- 3.5。 CUDA Python 中支持的 Python 功能
- 3.6。支持的原子操作
- 3.7。随机数生成
- 3.8。设备管理
- 3.10。示例
- 3.11。使用 CUDA 模拟器 调试 CUDA Python
- 3.12。 GPU 减少
- 3.13。 CUDA Ufuncs 和广义 Ufuncs
- 3.14。共享 CUDA 内存
- 3.15。 CUDA 阵列接口
- 3.16。 CUDA 常见问题
- 4. CUDA Python 参考
- 4.1。 CUDA 主机 API
- 4.2。 CUDA 内核 API
- 4.3。内存管理
- 5. 用于 AMD ROC GPU 的 Numba
- 5.1。概述
- 5.2。编写 HSA 内核
- 5.3。内存管理
- 5.4。编写设备功能
- 5.5。支持的原子操作
- 5.6。代理商
- 5.7。 ROC Ufuncs 和广义 Ufuncs
- 5.8。示例
- 6. 扩展 Numba
- 6.1。高级扩展 API
- 6.2。低级扩展 API
- 6.3。示例:间隔类型
- 7. 开发者手册
- 7.1。贡献给 Numba
- 7.2。 Numba 建筑
- 7.3。多态调度
- 7.4。关于发电机的注意事项
- 7.5。关于 Numba Runtime 的注意事项
- 7.6。使用 Numba Rewrite Pass 获得乐趣和优化
- 7.7。实时变量分析
- 7.8。上市
- 7.9。模板注释
- 7.10。关于自定义管道的注意事项
- 7.11。环境对象
- 7.12。哈希 的注意事项
- 7.13。 Numba 项目路线图
- 8. Numba 增强建议
- 9. 术语表