# 3.8。设备管理
> 原文: [http://numba.pydata.org/numba-doc/latest/cuda/device-management.html](http://numba.pydata.org/numba-doc/latest/cuda/device-management.html)
对于多 GPU 机器,用户可能想要选择要使用的 GPU。默认情况下,CUDA 驱动程序选择最快的 GPU 作为设备 0,这是 Numba 使用的默认设备。
除非使用托管/提供多个支持 CUDA 的 GPU 的系统,否则此页面上介绍的功能通常不感兴趣。
## 3.8.1。设备选择
如果需要,必须在使用任何 CUDA 功能之前完成设备选择。
```py
from numba import cuda
cuda.select_device(0)
```
该设备可以通过以下方式关闭:
```py
cuda.close()
```
然后,用户可以使用其他设备创建新上下文。
```py
cuda.select_device(1) # assuming we have 2 GPUs
```
```py
numba.cuda.select_device(device_id)
```
为所选 _device_id_ 创建新的 CUDA 上下文。 _device_id_ 应该是设备的编号(从 0 开始;设备顺序由 CUDA 库确定)。上下文与当前线程相关联。 Numba 目前每个线程只允许一个上下文。
如果成功,则此函数返回设备实例。
```py
numba.cuda.close()
```
显式关闭当前线程中的所有上下文。
注意
编译的函数与 CUDA 上下文相关联。这使得关闭和创建新设备并不是非常有用,尽管当机器有多个 GPU 时,选择使用哪个设备当然很有用。
# 3.9。设备列表
设备列表是系统中所有 GPU 的列表,可以编制索引以获取确保在所选 GPU 上执行的上下文管理器。
```py
numba.cuda.gpus
```
```py
numba.cuda.cudadrv.devices.gpus
```
`gpus`是`_DeviceList`类的一个实例,也可以从中检索当前的 GPU 上下文:
```py
class numba.cuda.cudadrv.devices._DeviceList
```
```py
current
```
如果没有活动设备,则返回活动设备或 None
- 1. 用户手册
- 1.1。 Numba 的约 5 分钟指南
- 1.2。概述
- 1.3。安装
- 1.4。使用@jit 编译 Python 代码
- 1.5。使用@generated_jit 进行灵活的专业化
- 1.6。创建 Numpy 通用函数
- 1.7。用@jitclass 编译 python 类
- 1.8。使用@cfunc 创建 C 回调
- 1.9。提前编译代码
- 1.10。使用@jit 自动并行化
- 1.11。使用@stencil装饰器
- 1.12。从 JIT 代码 中回调到 Python 解释器
- 1.13。性能提示
- 1.14。线程层
- 1.15。故障排除和提示
- 1.16。常见问题
- 1.17。示例
- 1.18。会谈和教程
- 2. 参考手册
- 2.1。类型和签名
- 2.2。即时编译
- 2.3。提前编译
- 2.4。公用事业
- 2.5。环境变量
- 2.6。支持的 Python 功能
- 2.7。支持的 NumPy 功能
- 2.8。与 Python 语义的偏差
- 2.9。浮点陷阱
- 2.10。 Python 2.7 寿命终止计划
- 3. 用于 CUDA GPU 的 Numba
- 3.1。概述
- 3.2。编写 CUDA 内核
- 3.3。内存管理
- 3.4。编写设备功能
- 3.5。 CUDA Python 中支持的 Python 功能
- 3.6。支持的原子操作
- 3.7。随机数生成
- 3.8。设备管理
- 3.10。示例
- 3.11。使用 CUDA 模拟器 调试 CUDA Python
- 3.12。 GPU 减少
- 3.13。 CUDA Ufuncs 和广义 Ufuncs
- 3.14。共享 CUDA 内存
- 3.15。 CUDA 阵列接口
- 3.16。 CUDA 常见问题
- 4. CUDA Python 参考
- 4.1。 CUDA 主机 API
- 4.2。 CUDA 内核 API
- 4.3。内存管理
- 5. 用于 AMD ROC GPU 的 Numba
- 5.1。概述
- 5.2。编写 HSA 内核
- 5.3。内存管理
- 5.4。编写设备功能
- 5.5。支持的原子操作
- 5.6。代理商
- 5.7。 ROC Ufuncs 和广义 Ufuncs
- 5.8。示例
- 6. 扩展 Numba
- 6.1。高级扩展 API
- 6.2。低级扩展 API
- 6.3。示例:间隔类型
- 7. 开发者手册
- 7.1。贡献给 Numba
- 7.2。 Numba 建筑
- 7.3。多态调度
- 7.4。关于发电机的注意事项
- 7.5。关于 Numba Runtime 的注意事项
- 7.6。使用 Numba Rewrite Pass 获得乐趣和优化
- 7.7。实时变量分析
- 7.8。上市
- 7.9。模板注释
- 7.10。关于自定义管道的注意事项
- 7.11。环境对象
- 7.12。哈希 的注意事项
- 7.13。 Numba 项目路线图
- 8. Numba 增强建议
- 9. 术语表