# 1.17。示例
> 原文: [http://numba.pydata.org/numba-doc/latest/user/examples.html](http://numba.pydata.org/numba-doc/latest/user/examples.html)
## 1.17.1。 Mandelbrot
```py
#! /usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function, division, absolute_import
from timeit import default_timer as timer
from matplotlib.pylab import imshow, jet, show, ion
import numpy as np
from numba import jit
@jit
def mandel(x, y, max_iters):
"""
Given the real and imaginary parts of a complex number,
determine if it is a candidate for membership in the Mandelbrot
set given a fixed number of iterations.
"""
i = 0
c = complex(x,y)
z = 0.0j
for i in range(max_iters):
z = z*z + c
if (z.real*z.real + z.imag*z.imag) >= 4:
return i
return 255
@jit
def create_fractal(min_x, max_x, min_y, max_y, image, iters):
height = image.shape[0]
width = image.shape[1]
pixel_size_x = (max_x - min_x) / width
pixel_size_y = (max_y - min_y) / height
for x in range(width):
real = min_x + x * pixel_size_x
for y in range(height):
imag = min_y + y * pixel_size_y
color = mandel(real, imag, iters)
image[y, x] = color
return image
image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8)
s = timer()
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20)
e = timer()
print(e - s)
imshow(image)
#jet()
#ion()
show()
```
## 1.17.2。移动平均线
```py
#!/usr/bin/env python
"""
A moving average function using @guvectorize.
"""
import numpy as np
from numba import guvectorize
@guvectorize(['void(float64[:], intp[:], float64[:])'], '(n),()->(n)')
def move_mean(a, window_arr, out):
window_width = window_arr[0]
asum = 0.0
count = 0
for i in range(window_width):
asum += a[i]
count += 1
out[i] = asum / count
for i in range(window_width, len(a)):
asum += a[i] - a[i - window_width]
out[i] = asum / count
arr = np.arange(20, dtype=np.float64).reshape(2, 10)
print(arr)
print(move_mean(arr, 3))
```
## 1.17.3。多线程
下面的代码展示了使用 [nogil](jit.html#jit-nogil) 功能时潜在的性能提升。例如,在 4 核机器上,我打印出以下结果:
```py
numpy (1 thread) 145 ms
numba (1 thread) 128 ms
numba (4 threads) 35 ms
```
注意
在 Python 3 下,您可以使用标准的 [concurrent.futures](https://docs.python.org/3/library/concurrent.futures.html) 模块,而不是手工生成线程和调度任务。
```py
#!/usr/bin/env python
from __future__ import print_function, division, absolute_import
import math
import threading
from timeit import repeat
import numpy as np
from numba import jit
nthreads = 4
size = 10**6
def func_np(a, b):
"""
Control function using Numpy.
"""
return np.exp(2.1 * a + 3.2 * b)
@jit('void(double[:], double[:], double[:])', nopython=True, nogil=True)
def inner_func_nb(result, a, b):
"""
Function under test.
"""
for i in range(len(result)):
result[i] = math.exp(2.1 * a[i] + 3.2 * b[i])
def timefunc(correct, s, func, *args, **kwargs):
"""
Benchmark *func* and print out its runtime.
"""
print(s.ljust(20), end=" ")
# Make sure the function is compiled before we start the benchmark
res = func(*args, **kwargs)
if correct is not None:
assert np.allclose(res, correct), (res, correct)
# time it
print('{:>5.0f} ms'.format(min(repeat(lambda: func(*args, **kwargs),
number=5, repeat=2)) * 1000))
return res
def make_singlethread(inner_func):
"""
Run the given function inside a single thread.
"""
def func(*args):
length = len(args[0])
result = np.empty(length, dtype=np.float64)
inner_func(result, *args)
return result
return func
def make_multithread(inner_func, numthreads):
"""
Run the given function inside *numthreads* threads, splitting its
arguments into equal-sized chunks.
"""
def func_mt(*args):
length = len(args[0])
result = np.empty(length, dtype=np.float64)
args = (result,) + args
chunklen = (length + numthreads - 1) // numthreads
# Create argument tuples for each input chunk
chunks = [[arg[i * chunklen:(i + 1) * chunklen] for arg in args]
for i in range(numthreads)]
# Spawn one thread per chunk
threads = [threading.Thread(target=inner_func, args=chunk)
for chunk in chunks]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
return result
return func_mt
func_nb = make_singlethread(inner_func_nb)
func_nb_mt = make_multithread(inner_func_nb, nthreads)
a = np.random.rand(size)
b = np.random.rand(size)
correct = timefunc(None, "numpy (1 thread)", func_np, a, b)
timefunc(correct, "numba (1 thread)", func_nb, a, b)
timefunc(correct, "numba (%d threads)" % nthreads, func_nb_mt, a, b)
```
- 1. 用户手册
- 1.1。 Numba 的约 5 分钟指南
- 1.2。概述
- 1.3。安装
- 1.4。使用@jit 编译 Python 代码
- 1.5。使用@generated_jit 进行灵活的专业化
- 1.6。创建 Numpy 通用函数
- 1.7。用@jitclass 编译 python 类
- 1.8。使用@cfunc 创建 C 回调
- 1.9。提前编译代码
- 1.10。使用@jit 自动并行化
- 1.11。使用@stencil装饰器
- 1.12。从 JIT 代码 中回调到 Python 解释器
- 1.13。性能提示
- 1.14。线程层
- 1.15。故障排除和提示
- 1.16。常见问题
- 1.17。示例
- 1.18。会谈和教程
- 2. 参考手册
- 2.1。类型和签名
- 2.2。即时编译
- 2.3。提前编译
- 2.4。公用事业
- 2.5。环境变量
- 2.6。支持的 Python 功能
- 2.7。支持的 NumPy 功能
- 2.8。与 Python 语义的偏差
- 2.9。浮点陷阱
- 2.10。 Python 2.7 寿命终止计划
- 3. 用于 CUDA GPU 的 Numba
- 3.1。概述
- 3.2。编写 CUDA 内核
- 3.3。内存管理
- 3.4。编写设备功能
- 3.5。 CUDA Python 中支持的 Python 功能
- 3.6。支持的原子操作
- 3.7。随机数生成
- 3.8。设备管理
- 3.10。示例
- 3.11。使用 CUDA 模拟器 调试 CUDA Python
- 3.12。 GPU 减少
- 3.13。 CUDA Ufuncs 和广义 Ufuncs
- 3.14。共享 CUDA 内存
- 3.15。 CUDA 阵列接口
- 3.16。 CUDA 常见问题
- 4. CUDA Python 参考
- 4.1。 CUDA 主机 API
- 4.2。 CUDA 内核 API
- 4.3。内存管理
- 5. 用于 AMD ROC GPU 的 Numba
- 5.1。概述
- 5.2。编写 HSA 内核
- 5.3。内存管理
- 5.4。编写设备功能
- 5.5。支持的原子操作
- 5.6。代理商
- 5.7。 ROC Ufuncs 和广义 Ufuncs
- 5.8。示例
- 6. 扩展 Numba
- 6.1。高级扩展 API
- 6.2。低级扩展 API
- 6.3。示例:间隔类型
- 7. 开发者手册
- 7.1。贡献给 Numba
- 7.2。 Numba 建筑
- 7.3。多态调度
- 7.4。关于发电机的注意事项
- 7.5。关于 Numba Runtime 的注意事项
- 7.6。使用 Numba Rewrite Pass 获得乐趣和优化
- 7.7。实时变量分析
- 7.8。上市
- 7.9。模板注释
- 7.10。关于自定义管道的注意事项
- 7.11。环境对象
- 7.12。哈希 的注意事项
- 7.13。 Numba 项目路线图
- 8. Numba 增强建议
- 9. 术语表