# 3.10。示例
> 原文: [http://numba.pydata.org/numba-doc/latest/cuda/examples.html](http://numba.pydata.org/numba-doc/latest/cuda/examples.html)
## 3.10.1。矩阵乘法
这是使用 CUDA 内核的矩阵乘法的简单实现:
```py
@cuda.jit
def matmul(A, B, C):
"""Perform square matrix multiplication of C = A * B
"""
i, j = cuda.grid(2)
if i < C.shape[0] and j < C.shape[1]:
tmp = 0.
for k in range(A.shape[1]):
tmp += A[i, k] * B[k, j]
C[i, j] = tmp
```
这种实现很简单直观但性能很差,因为相同的矩阵元素将从设备内存中多次加载,这很慢(某些设备可能有透明的数据缓存,但它们可能不够大,不能一次保存整个输入)。
如果我们使用阻塞算法来减少对设备内存的访问,则会更快。 CUDA 为块中的线程提供快速[共享内存](memory.html#cuda-shared-memory),以便在任务上协同计算。以下实现了使用共享内存的方形矩阵乘法的更快版本:
```py
from numba import cuda, float32
# Controls threads per block and shared memory usage.
# The computation will be done on blocks of TPBxTPB elements.
TPB = 16
@cuda.jit
def fast_matmul(A, B, C):
# Define an array in the shared memory
# The size and type of the arrays must be known at compile time
sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)
sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)
x, y = cuda.grid(2)
tx = cuda.threadIdx.x
ty = cuda.threadIdx.y
bpg = cuda.gridDim.x # blocks per grid
if x >= C.shape[0] and y >= C.shape[1]:
# Quit if (x, y) is outside of valid C boundary
return
# Each thread computes one element in the result matrix.
# The dot product is chunked into dot products of TPB-long vectors.
tmp = 0.
for i in range(bpg):
# Preload data into shared memory
sA[tx, ty] = A[x, ty + i * TPB]
sB[tx, ty] = B[tx + i * TPB, y]
# Wait until all threads finish preloading
cuda.syncthreads()
# Computes partial product on the shared memory
for j in range(TPB):
tmp += sA[tx, j] * sB[j, ty]
# Wait until all threads finish computing
cuda.syncthreads()
C[x, y] = tmp
```
由于共享内存是有限的资源,因此代码一次从输入数组预加载小块。然后,它调用 [`syncthreads()`](../cuda-reference/kernel.html#numba.cuda.syncthreads "numba.cuda.syncthreads") 等待所有线程完成预加载并在共享内存上进行计算之前。它在计算后再次同步,以确保所有线程在共享内存中完成数据,然后在下一次循环迭代中覆盖它。
- 1. 用户手册
- 1.1。 Numba 的约 5 分钟指南
- 1.2。概述
- 1.3。安装
- 1.4。使用@jit 编译 Python 代码
- 1.5。使用@generated_jit 进行灵活的专业化
- 1.6。创建 Numpy 通用函数
- 1.7。用@jitclass 编译 python 类
- 1.8。使用@cfunc 创建 C 回调
- 1.9。提前编译代码
- 1.10。使用@jit 自动并行化
- 1.11。使用@stencil装饰器
- 1.12。从 JIT 代码 中回调到 Python 解释器
- 1.13。性能提示
- 1.14。线程层
- 1.15。故障排除和提示
- 1.16。常见问题
- 1.17。示例
- 1.18。会谈和教程
- 2. 参考手册
- 2.1。类型和签名
- 2.2。即时编译
- 2.3。提前编译
- 2.4。公用事业
- 2.5。环境变量
- 2.6。支持的 Python 功能
- 2.7。支持的 NumPy 功能
- 2.8。与 Python 语义的偏差
- 2.9。浮点陷阱
- 2.10。 Python 2.7 寿命终止计划
- 3. 用于 CUDA GPU 的 Numba
- 3.1。概述
- 3.2。编写 CUDA 内核
- 3.3。内存管理
- 3.4。编写设备功能
- 3.5。 CUDA Python 中支持的 Python 功能
- 3.6。支持的原子操作
- 3.7。随机数生成
- 3.8。设备管理
- 3.10。示例
- 3.11。使用 CUDA 模拟器 调试 CUDA Python
- 3.12。 GPU 减少
- 3.13。 CUDA Ufuncs 和广义 Ufuncs
- 3.14。共享 CUDA 内存
- 3.15。 CUDA 阵列接口
- 3.16。 CUDA 常见问题
- 4. CUDA Python 参考
- 4.1。 CUDA 主机 API
- 4.2。 CUDA 内核 API
- 4.3。内存管理
- 5. 用于 AMD ROC GPU 的 Numba
- 5.1。概述
- 5.2。编写 HSA 内核
- 5.3。内存管理
- 5.4。编写设备功能
- 5.5。支持的原子操作
- 5.6。代理商
- 5.7。 ROC Ufuncs 和广义 Ufuncs
- 5.8。示例
- 6. 扩展 Numba
- 6.1。高级扩展 API
- 6.2。低级扩展 API
- 6.3。示例:间隔类型
- 7. 开发者手册
- 7.1。贡献给 Numba
- 7.2。 Numba 建筑
- 7.3。多态调度
- 7.4。关于发电机的注意事项
- 7.5。关于 Numba Runtime 的注意事项
- 7.6。使用 Numba Rewrite Pass 获得乐趣和优化
- 7.7。实时变量分析
- 7.8。上市
- 7.9。模板注释
- 7.10。关于自定义管道的注意事项
- 7.11。环境对象
- 7.12。哈希 的注意事项
- 7.13。 Numba 项目路线图
- 8. Numba 增强建议
- 9. 术语表