多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
# 3.1。概述 > 原文: [http://numba.pydata.org/numba-doc/latest/cuda/overview.html](http://numba.pydata.org/numba-doc/latest/cuda/overview.html) Numba 通过直接将 CudA 内核和 CUDA 执行模型之后的 CUDA 内核和设备函数的受限子集编译为 CUDA GPU 编程。用 Numba 编写的内核似乎可以直接访问 NumPy 数组。 NumPy 阵列自动在 CPU 和 GPU 之间传输。 ## 3.1.1。术语 这里列出了 CUDA 编程主题中的几个重要术语: * _ 主机 _:CPU * _ 设备 _:GPU * _ 主机内存 _:系统主内存 * _ 设备内存 _:GPU 卡上的板载内存 * _ 内核 _:由主机启动并在设备上执行的 GPU 功能 * _ 设备功能 _:在设备上执行的 GPU 功能,只能从设备调用(即从内核或其他设备功能) ## 3.1.2。编程模型 Numba 公开的大多数 CUDA 编程工具都直接映射到 NVidia 提供的 CUDA C 语言。因此,建议您阅读官方 [CUDA C 编程指南](http://docs.nvidia.com/cuda/cuda-c-programming-guide)。 ## 3.1.3。要求 ### 3.1.3.1。支持的 GPU Numba 支持支持 CUDA 的 GPU,其计算能力为 2.0 或更高,具有最新数据的 Nvidia 驱动程序。 ### 3.1.3.2。软件 您将需要安装 CUDA 工具包。如果您使用的是 Conda,只需输入: ```py $ conda install cudatoolkit ``` ## 3.1.4。缺少 CUDA 功能 Numba 尚未实现 CUDA 的所有功能。下面列出了一些缺少的功能: * 动态并行 * 纹理记忆