🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
### 前言   [SGI STL源码](https://www.sgi.com/tech/stl/download.html)下载地址   空间配置是为存储数据提供可用的空间,在Standard Template Library(STL)中,空间配置是最底层的东西,为容器提供服务。在C++中,一般管理内存分配是使用new和delete进行操作,这两个操作都需要经过两个步骤; new操作的步骤:(1)调用::operator new配置内存;(2)调用对象的构造函数构造对象并初始化。 delete操作步骤:(1)调用对象的析构函数析构对象;(2)调用::operator delete释放内存。例如: ~~~ class Foo { ... }; Foo* pf = new Foo; ... delete pf; ~~~   而在STL中,空间配置在C++的基础上增加了一些特性。STL allocator 将这两个阶段分开操作,内存配置操作由空间配置器stl::alloc中的alloc::allocate(),内存释放由alloc::deallocate()负责;对象构造操作由::construct()负责,对象析构操作由::destroy()负责。SGI STL中考虑到了异常处理,内置轻量级内存池(主要用于处理小块内存的分配,应对内存碎片问题)实现,多线程中的内存分配处理(主要是针对内存池的互斥访问)等。 ### 空间配置器的标准接口   在SGI STL中,空间配置器(Allocator)的主要实现文件是alloc.h和stl_alloc.h,标准接口位于文件stl_alloc.h的588-628行;具体如下: ~~~ /*tihs program is in the file of stl_alloc.h from line 588 to 628 */ template <class _Tp> class allocator { typedef alloc _Alloc; // The underlying allocator. public: //数据类型的成员变量在后续章节(traits编程技巧)介绍 typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template <class _Tp1> struct rebind {//嵌套一个template,且仅包含唯一成员other,是一个typedef; typedef allocator<_Tp1> other; }; //下面是成员函数 allocator() __STL_NOTHROW {} //默认构造函数,__STL_NOTHROW在 stl_config.h中定义,要么为空,要么为 throw()异常机制 allocator(const allocator&) __STL_NOTHROW {} //复制构造函数 template <class _Tp1> allocator(const allocator<_Tp1>&) __STL_NOTHROW {}//泛化的复制构造函数 ~allocator() __STL_NOTHROW {}//析构函数 pointer address(reference __x) const { return &__x; }//返回对象的地址 const_pointer address(const_reference __x) const { return &__x; }//返回const对象的地址 // __n is permitted to be 0. The C++ standard says nothing about what // the return value is when __n == 0. _Tp* allocate(size_type __n, const void* = 0) {// 配置空间,如果申请的空间块数不为0,那么调用 _Alloc 也即 alloc 的 allocate 函数来分配内存, //这里的 alloc 在 SGI STL 中默认使用的是__default_alloc_template<__NODE_ALLOCATOR_THREADS, 0>这个实现(见第402行) return __n != 0 ? static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))) : 0; } // __p is not permitted to be a null pointer. void deallocate(pointer __p, size_type __n)//释放已配置的空间 { _Alloc::deallocate(__p, __n * sizeof(_Tp)); } size_type max_size() const __STL_NOTHROW //返回可成功配置的最大值 { return size_t(-1) / sizeof(_Tp); } void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }//构造,等同于new ((void*)p) T(x) void destroy(pointer __p) { __p->~_Tp(); }//析构,等同于p->~T() }; ~~~   在SGI STL的的stl_alloc.h文件中,可以看到有以下几种空间配置的类模板: ~~~ template <int __inst> class __malloc_alloc_template // Malloc-based allocator. Typically slower than default alloc typedef __malloc_alloc_template<0> malloc_alloc template<class _Tp, class _Alloc> class simple_alloc template <class _Alloc> class debug_alloc template <bool threads, int inst> class __default_alloc_template // Default node allocator. typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc typedef __default_alloc_template<false, 0> single_client_alloc template <class _Tp>class allocator template<>class allocator<void> template <class _Tp, class _Alloc>struct __allocator template <class _Alloc>class __allocator<void, _Alloc> ~~~  其中simple_alloc,debug_alloc,allocator和__allocator都是对其他适配器(如__Alloc::allocate)的一个简单封装。__malloc_alloc_template和__default_alloc_template这两个配置器就是SGI STL配置器的重点。其中__malloc_alloc_template是SGI STL的第一级配置器,只是对系统的malloc,realloc,free函数的一个简单封装,并考虑到了分配失败后的异常处理。而__default_alloc_template是SGI STL的第二级配置器,在第一级配置器的基础上还考虑了内存碎片的问题,通过内置一个轻量级的内存池,及在多线程环境下内存池互斥访问的机制。 ### 第一级配置器__malloc_alloc_template:异常处理   第一级配置器内存分配失败一般是由于内存不足out-of-memory(oom),处理异常时,首先用户自己设计异常处理例程,若用户没有定义,仅仅是打印错误信息并强制退出。总的来说,就是留给用户异常处理接口和默认强制退出处理。 ~~~ //异常处理 /*tihs program is in the file of stl_alloc.h*/ //line 109 to 118 class __malloc_alloc_template { private: //内存不足异常处理 static void* _S_oom_malloc(size_t); static void* _S_oom_realloc(void*, size_t); #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG static void (* __malloc_alloc_oom_handler)(); #endif //line 141 to 146 //指定自己的异常处理 static void (* __set_malloc_handler(void (*__f)()))() { void (* __old)() = __malloc_alloc_oom_handler; __malloc_alloc_oom_handler = __f; return(__old); } //line 152 to 155 #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG template <int __inst> void (* __malloc_alloc_template<__inst>::__malloc_alloc_oom_handler)() = 0; #endif //line 41 to 50 #ifndef __THROW_BAD_ALLOC # if defined(__STL_NO_BAD_ALLOC) || !defined(__STL_USE_EXCEPTIONS) # include <stdio.h> # include <stdlib.h> //默认的强制退出 # define __THROW_BAD_ALLOC fprintf(stderr, "out of memory\n"); exit(1) # else /* Standard conforming out-of-memory handling */ # include <new> //抛出用户设计异常处理例程 # define __THROW_BAD_ALLOC throw std::bad_alloc() # endif #endif ~~~ ### 第二级配置器__default_alloc_template   第二级配置器主要是利用内存池进行管理小内存分配问题,并且在多线程环境下内存池的互斥访问问题。第一级配置器__malloc_alloc_template只是malloc对的一层封装,没有考虑内存碎片问题。因此,第二级配置器是在第一级配置器的基础上考虑了内存碎片问题,对于申请**内存大于**128bytes**移交给第一级配置器__malloc_alloc_template处理。对于小内存**(小于**128bytes**)**的申请,利用内存池来管理,直接从内存池分配即可,并维护自由链表,自由链表是来分配同样的小内存和回收小内存,即程序再次申请小内存直接从自由链表中分配,当小内存释放时,自由链表对其进行回收。   为了方便管理,SGI STL第二级配置器会主动将任何小额区块的内存需求量上调为8的倍数,即若用户申请的小额区块内存不满足8的倍数时,系统自动向上取整为8的倍数。由于SGI STL第二级配置器要求小额区块的内存最大为128bytes,则自由链表的个数为16个,即128/8=16;每个链表分别维护区块内存大小为[![](https://box.kancloud.cn/2016-07-12_5784b87732964.latex "(8,16,24,...,128)")](http://www.codecogs.com/eqnedit.php?latex=(8,16,24,...,128))bytes。   下面给出第二级配置器处理的流程图和源代码: ![](https://box.kancloud.cn/2016-07-12_5784b8774bd06.jpg) ~~~ /*tihs program is in the file of stl_alloc.h from line 288 to 375 */ //第二级配置器__default_alloc_template template <bool threads, int inst> class __default_alloc_template { private: // Really we should use static const int x = N // instead of enum { x = N }, but few compilers accept the former. #if ! (defined(__SUNPRO_CC) || defined(__GNUC__)) enum {_ALIGN = 8};//小额区块的上调边界 enum {_MAX_BYTES = 128};//小额区块的最大内存 enum {_NFREELISTS = 16}; // _MAX_BYTES/_ALIGN;自由链表个数 # endif static size_t _S_round_up(size_t __bytes) //函数功能:调整内存大小为8的倍数 { return (((__bytes) + (size_t) _ALIGN-1) & ~((size_t) _ALIGN - 1)); } __PRIVATE: union _Obj {//自由链表节点属性 union _Obj* _M_free_list_link; char _M_client_data[1]; /* The client sees this. */ }; private: # if defined(__SUNPRO_CC) || defined(__GNUC__) || defined(__HP_aCC) static _Obj* __STL_VOLATILE _S_free_list[]; // Specifying a size results in duplicate def for 4.1 # else static _Obj* __STL_VOLATILE _S_free_list[_NFREELISTS]; # endif static size_t _S_freelist_index(size_t __bytes) {//函数功能:计算所申请区块内存在自由链表中对应的号数,从0开始 return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1); } // Returns an object of size __n, and optionally adds to size __n free list. static void* _S_refill(size_t __n);//填充空间,把大小为n的内存空间加到自由链表 // Allocates a chunk for nobjs of size size. nobjs may be reduced // if it is inconvenient to allocate the requested number. /*从内存池中分配空间,该空间可容纳__nobjs大小为__size的区块,可能会少于__nobjs个*/ static char* _S_chunk_alloc(size_t __size, int& __nobjs); // Chunk allocation state. static char* _S_start_free;//内存池起始位置 static char* _S_end_free;//内存池结束位置 static size_t _S_heap_size; # ifdef __STL_THREADS static _STL_mutex_lock _S_node_allocator_lock; # endif // It would be nice to use _STL_auto_lock here. But we // don't need the NULL check. And we do need a test whether // threads have actually been started. class _Lock; friend class _Lock; class _Lock {//该类保证内存池在多线程环境解决互斥访问 public: _Lock() { __NODE_ALLOCATOR_LOCK; } ~_Lock() { __NODE_ALLOCATOR_UNLOCK; } }; public: /* __n must be > 0 */ static void* allocate(size_t __n) { void* __ret = 0; if (__n > (size_t) _MAX_BYTES) { __ret = malloc_alloc::allocate(__n);//内存大于128时,采用第一级配置器处理 } else { _Obj* __STL_VOLATILE* __my_free_list = _S_free_list + _S_freelist_index(__n); // Acquire the lock here with a constructor call. // This ensures that it is released in exit or during stack // unwinding. # ifndef _NOTHREADS /*REFERENCED*/ _Lock __lock_instance; # endif _Obj* __RESTRICT __result = *__my_free_list; if (__result == 0) __ret = _S_refill(_S_round_up(__n)); else { *__my_free_list = __result -> _M_free_list_link; __ret = __result; } } return __ret; }; //初始化操作 //line from 554 to 571 template <bool __threads, int __inst> char* __default_alloc_template<__threads, __inst>::_S_start_free = 0; template <bool __threads, int __inst> char* __default_alloc_template<__threads, __inst>::_S_end_free = 0; template <bool __threads, int __inst> size_t __default_alloc_template<__threads, __inst>::_S_heap_size = 0; template <bool __threads, int __inst> typename __default_alloc_template<__threads, __inst>::_Obj* __STL_VOLATILE __default_alloc_template<__threads, __inst> ::_S_free_list[ # if defined(__SUNPRO_CC) || defined(__GNUC__) || defined(__HP_aCC) _NFREELISTS # else __default_alloc_template<__threads, __inst>::_NFREELISTS # endif ] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; ~~~ ### 空间配置函数allocate() 空间配置函数allocate()的具体实现步骤如下: 1. 若用户申请的内存大于128bytes,则调用第一级配置器分配空间; 1. 若小于128bytes检查对应的自由链表free_list,如果自由链表存在可用的区块,则直接使用,若不存在,则调用填充函数refill()为自由链表重新填充空间; 空间配置函数allocate()的源代码如下: ~~~ /* __n must be > 0 */ static void* allocate(size_t __n) { void* __ret = 0; if (__n > (size_t) _MAX_BYTES) { __ret = malloc_alloc::allocate(__n);//内存大于128时,采用第一级配置器处理 } else { _Obj* __STL_VOLATILE* __my_free_list = _S_free_list + _S_freelist_index(__n); // Acquire the lock here with a constructor call. // This ensures that it is released in exit or during stack // unwinding. # ifndef _NOTHREADS /*REFERENCED*/ _Lock __lock_instance; # endif _Obj* __RESTRICT __result = *__my_free_list; if (__result == 0)//若自由链表free_list不存在可用的区块,则从内存池中填充自由链表 __ret = _S_refill(_S_round_up(__n)); else {//若自由链表free_list存在可用区块,调整free_list *__my_free_list = __result -> _M_free_list_link; __ret = __result; } } return __ret; }; ~~~ ### 空间释放函数deallocate()   首先判断区块的大小,大于128bytes直接调用第一级配置器,若小于128bytes,则找出相应的自由链表free_list,将其回收。源代码如下: ~~~ /* __p may not be 0 */ static void deallocate(void* __p, size_t __n) { if (__n > (size_t) _MAX_BYTES)//内存大于128时,采用第一级配置器处理 malloc_alloc::deallocate(__p, __n); else {//否则,找到相应的自由链表位置,将其回收 _Obj* __STL_VOLATILE* __my_free_list = _S_free_list + _S_freelist_index(__n); _Obj* __q = (_Obj*)__p; // acquire lock # ifndef _NOTHREADS /*REFERENCED*/ _Lock __lock_instance; # endif /* _NOTHREADS */ __q -> _M_free_list_link = *__my_free_list; *__my_free_list = __q; // lock is released here } } ~~~ ### 重新填充函数refill()   重新填充函数refill()是在自由链表不存在可用的区块时被调用。默认是为自由链表申请20个节点,第1个给客户端,剩下19个留给自由链表管理。原代码如下: ~~~ /* Returns an object of size __n, and optionally adds to size __n free list.*/ /* We assume that __n is properly aligned. */ /* We hold the allocation lock. */ template <bool __threads, int __inst> void* __default_alloc_template<__threads, __inst>::_S_refill(size_t __n) { int __nobjs = 20;//默认节点数 //调用_S_chunk_alloc,从内存池中获得内存空间 char* __chunk = _S_chunk_alloc(__n, __nobjs); _Obj* __STL_VOLATILE* __my_free_list; _Obj* __result; _Obj* __current_obj; _Obj* __next_obj; int __i; //如果只有一个区块,返回给客户端,自由链表没有接区块管理 if (1 == __nobjs) return(__chunk); //调整自由链表free_list,准备管理新节点 __my_free_list = _S_free_list + _S_freelist_index(__n); /* Build free list in chunk */ __result = (_Obj*)__chunk;//这一块返回给客户端 //自由链表free_list指向新配置的空间 *__my_free_list = __next_obj = (_Obj*)(__chunk + __n); for (__i = 1; ; __i++) {//这里第0个返回给客户端,所以从1开始 __current_obj = __next_obj; __next_obj = (_Obj*)((char*)__next_obj + __n); if (__nobjs - 1 == __i) { __current_obj -> _M_free_list_link = 0; break; } else { __current_obj -> _M_free_list_link = __next_obj; } } return(__result); } ~~~ ### 内存池管理机制    chunk_alloc函数具体实现步骤如下: 1. 内存池剩余空间完全满足20个区块的需求量,则直接获取对应大小的空间。 1. 内存池剩余空间不能完全满足20个区块的需求量,但是足够供应一个及以上的区块,则获取满足条件的区块个数的空间。 1. 内存池剩余空间不能满足一个区块的大小,则: - 首先判断内存池中是否有残余零头内存空间,如果有则进行回收,将其编入free_list。 - 然后向heap申请空间,补充内存池。 - heap有足够的空间,空间分配成功。 - heap空间不足,即malloc()调用失败。则 - 查找free_list中尚有未用区块,调整以进行释放,将其编入内存池。然后递归调用chunk_alloc函数从内存池取空间供free_list备用。 - 搜寻free_list释放空间也未能解决问题,这时候调用第一级配置器,利用out-of-memory机制尝试解决内存不足问题。  源代码如下: ~~~ /* We allocate memory in large chunks in order to avoid fragmenting */ /* the malloc heap too much. */ /* We assume that size is properly aligned. */ /* We hold the allocation lock. */ template <bool __threads, int __inst> char* __default_alloc_template<__threads, __inst>::_S_chunk_alloc(size_t __size, int& __nobjs) { char* __result; size_t __total_bytes = __size * __nobjs;//所需总的内存块 size_t __bytes_left = _S_end_free - _S_start_free;//内存池剩余空间 if (__bytes_left >= __total_bytes) {//若内存池剩余空间满足20个需求,直接分配 __result = _S_start_free; _S_start_free += __total_bytes; return(__result); } else if (__bytes_left >= __size) { /*若内存池剩余空间不满足20个需求,但足够满足一个或多个,取出能够满足条件区块的个数*/ __nobjs = (int)(__bytes_left/__size); __total_bytes = __size * __nobjs; __result = _S_start_free; _S_start_free += __total_bytes; return(__result); } else { /*内存池剩余空间连一个区块大小都无法提供*/ size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size >> 4); // Try to make use of the left-over piece. if (__bytes_left > 0) { /*判断内存池中是否有残余零头内存空间,如果有则进行回收,将其编入free list*/ _Obj* __STL_VOLATILE* __my_free_list = _S_free_list + _S_freelist_index(__bytes_left); ((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list; *__my_free_list = (_Obj*)_S_start_free; } //配置可用的堆空间,用来补充内存池空间 _S_start_free = (char*)malloc(__bytes_to_get); if (0 == _S_start_free) {//若堆空间不足 size_t __i; _Obj* __STL_VOLATILE* __my_free_list; _Obj* __p; // Try to make do with what we have. That can't // hurt. We do not try smaller requests, since that tends // to result in disaster on multi-process machines. for (__i = __size; __i <= (size_t) _MAX_BYTES; __i += (size_t) _ALIGN) { /*搜寻适当的free list(适当的是指:尚有未用区块,并且区块足够大),调整以进行释放,将其编入内存池。 **然后递归调用chunk_alloc函数从内存池取空间供free list。*/ __my_free_list = _S_free_list + _S_freelist_index(__i); __p = *__my_free_list; if (0 != __p) {//自由练表中存在未被使用的区块,调整并释放该区块 *__my_free_list = __p -> _M_free_list_link; _S_start_free = (char*)__p; _S_end_free = _S_start_free + __i; return(_S_chunk_alloc(__size, __nobjs)); // Any leftover piece will eventually make it to the // right free list. } } _S_end_free = 0; // In case of exception.调用第一级配置器 _S_start_free = (char*)malloc_alloc::allocate(__bytes_to_get); // This should either throw an // exception or remedy the situation. Thus we assume it // succeeded. } _S_heap_size += __bytes_to_get; _S_end_free = _S_start_free + __bytes_to_get; return(_S_chunk_alloc(__size, __nobjs)); } } ~~~ ### 多线程环境下内存池互斥访问   在第二级配置器中,存在着多线程环境的内存池管理,解决多线程环境下内存池互斥访问,需在自由链表free_list中进行修改调整,我们从SGI STL第二级配置器源码中看到,嵌套一个类class _Lock ,该类的作用是解决互斥访问,并且只有两个函数:构造函数和析构函数;使用构造函数对内存池进行加锁,使用析构函数对内存池进行解锁。关于多线程内存池互斥访问的源代码如下: ~~~ #ifdef __STL_THREADS # include <stl_threads.h>//包含线程文件 # define __NODE_ALLOCATOR_THREADS true # ifdef __STL_SGI_THREADS // We test whether threads are in use before locking. // Perhaps this should be moved into stl_threads.h, but that // probably makes it harder to avoid the procedure call when // it isn't needed. extern "C" { extern int __us_rsthread_malloc; } // The above is copied from malloc.h. Including <malloc.h> // would be cleaner but fails with certain levels of standard // conformance. # define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \ { _S_node_allocator_lock._M_acquire_lock(); } # define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \ { _S_node_allocator_lock._M_release_lock(); } # else /* !__STL_SGI_THREADS */ # define __NODE_ALLOCATOR_LOCK \ { if (threads) _S_node_allocator_lock._M_acquire_lock(); }//获取锁 # define __NODE_ALLOCATOR_UNLOCK \ { if (threads) _S_node_allocator_lock._M_release_lock(); }//释放锁 # endif #else // Thread-unsafe # define __NODE_ALLOCATOR_LOCK # define __NODE_ALLOCATOR_UNLOCK # define __NODE_ALLOCATOR_THREADS false #endif # ifdef __STL_THREADS static _STL_mutex_lock _S_node_allocator_lock;//互斥锁变量 # endif // It would be nice to use _STL_auto_lock here. But we // don't need the NULL check. And we do need a test whether // threads have actually been started. class _Lock; friend class _Lock; class _Lock {//解决内存池在多线程环境下的管理 public: _Lock() { __NODE_ALLOCATOR_LOCK; } ~_Lock() { __NODE_ALLOCATOR_UNLOCK; } }; ~~~ 参考资料: http://ibillxia.github.io/blog/2014/06/13/stl-source-insight-1-memory-allocator/ http://blog.csdn.net/xiajun07061225/article/details/8807890 http://www.cnblogs.com/kanego/archive/2012/08/14/2638818.html