企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
### 前言   在STL标准中提供了双向链表list,本文介绍的是SGI STL中<stl_slist.h>定义的单向链表slist。单向链表的迭代器是属于正向迭代器,所以在单链表进行插入元素时,在指定节点之后插入时时间是常数O(1),在指定节点之前插入时需要线性时间O(n)。单向链表的排序算法sort和list容器的排序算法sort一样的思想,可以再《[STL源码剖析——list容器的排序算法sort()](http://blog.csdn.net/chenhanzhun/article/details/39337331)》了解。 ### 单向链表slist ### slist节点结构       slist的节点结构只有存储节点数据和指向下一个节点的指针。 ~~~ //单向链表的节点基本结构 struct _Slist_node_base { _Slist_node_base* _M_next; }; //单向链表节点结构 template <class _Tp> struct _Slist_node : public _Slist_node_base { _Tp _M_data; }; ~~~ ### slist迭代器   由于slist是单向链表,所以只提供正向迭代器,若要查找指定节点的前一个节点时,operator--不能使用,只能从头遍历,但是可以operator++和operator*操作; ~~~ //单向链表的迭代器的基本结构 struct _Slist_iterator_base { typedef size_t size_type; typedef ptrdiff_t difference_type; typedef forward_iterator_tag iterator_category;//正向迭代器 _Slist_node_base* _M_node;//链表节点指针 _Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {} void _M_incr() { _M_node = _M_node->_M_next; }//前移一个节点 bool operator==(const _Slist_iterator_base& __x) const { return _M_node == __x._M_node;//节点指针指向相同位置 } bool operator!=(const _Slist_iterator_base& __x) const { return _M_node != __x._M_node;//节点指针指向不同位置 } }; //单向链表迭代器结构 template <class _Tp, class _Ref, class _Ptr> struct _Slist_iterator : public _Slist_iterator_base { typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator; typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; typedef _Slist_iterator<_Tp, _Ref, _Ptr> _Self; typedef _Tp value_type; typedef _Ptr pointer; typedef _Ref reference; typedef _Slist_node<_Tp> _Node; _Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {} _Slist_iterator() : _Slist_iterator_base(0) {} _Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {} //解除引用,返回节点数据 reference operator*() const { return ((_Node*) _M_node)->_M_data; } #ifndef __SGI_STL_NO_ARROW_OPERATOR pointer operator->() const { return &(operator*()); } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ //前缀operator++ _Self& operator++() { _M_incr(); return *this; } //后缀operator++ _Self operator++(int) { _Self __tmp = *this; _M_incr(); return __tmp; } //单向链表不能operator--操作 }; ~~~ ### slist的数据结构     slist单向链表只需要给出该链表的头部head,便可以通过head->next遍历该链表; ~~~ typedef simple_alloc<_Slist_node<_Tp>, _Alloc> _Alloc_type; _Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); } void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); } _Slist_node_base* _M_erase_after(_Slist_node_base* __pos) { _Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next); _Slist_node_base* __next_next = __next->_M_next; __pos->_M_next = __next_next; destroy(&__next->_M_data); _M_put_node(__next); return __next_next; } _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*); protected: _Slist_node_base _M_head; }; //单向链表slist定义 template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) > class slist : private _Slist_base<_Tp,_Alloc> { // requirements: __STL_CLASS_REQUIRES(_Tp, _Assignable); private: typedef _Slist_base<_Tp,_Alloc> _Base; public: typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator; typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; private: typedef _Slist_node<_Tp> _Node; typedef _Slist_node_base _Node_base; typedef _Slist_iterator_base _Iterator_base; ... }; ~~~ ### slist单向链表的源码完成剖析 ~~~ #ifndef __SGI_STL_INTERNAL_SLIST_H #define __SGI_STL_INTERNAL_SLIST_H #include <concept_checks.h> __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1174 #pragma set woff 1375 #endif //单向链表的节点基本结构 struct _Slist_node_base { _Slist_node_base* _M_next; }; //单向链表节点结构 template <class _Tp> struct _Slist_node : public _Slist_node_base { _Tp _M_data; }; //在节点prev之后插入节点new inline _Slist_node_base* __slist_make_link(_Slist_node_base* __prev_node, _Slist_node_base* __new_node) { //更新节点指针 //即新节点new下一节点为当前节点prev的下一个节点 __new_node->_M_next = __prev_node->_M_next; //当前节点的prev的下一个节点为new __prev_node->_M_next = __new_node; return __new_node;//返回新插入节点的地址 } //查找指定节点node的前一个节点 //由于是单向链表,需从表头head开始查找 inline _Slist_node_base* __slist_previous(_Slist_node_base* __head, const _Slist_node_base* __node) { while (__head && __head->_M_next != __node) __head = __head->_M_next;//遍历节点,直到遇到所找节点或不存在该节点 return __head; } inline const _Slist_node_base* __slist_previous(const _Slist_node_base* __head, const _Slist_node_base* __node) { while (__head && __head->_M_next != __node) __head = __head->_M_next; return __head; } //将节点(before_first,before_last]插入到指定节点pos之后 inline void __slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __before_first, _Slist_node_base* __before_last) { if (__pos != __before_first && __pos != __before_last) { _Slist_node_base* __first = __before_first->_M_next; _Slist_node_base* __after = __pos->_M_next; //将节点链表(before_first,before_last]从链表中移除 __before_first->_M_next = __before_last->_M_next; //将(before_first,before_last]插入到指定位置pos之后 __pos->_M_next = __first; __before_last->_M_next = __after; } } inline void __slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head) { _Slist_node_base* __before_last = __slist_previous(__head, 0);//找出链表的最后一个节点 if (__before_last != __head) {//链表非空 _Slist_node_base* __after = __pos->_M_next; __pos->_M_next = __head->_M_next; __head->_M_next = 0; __before_last->_M_next = __after; } } //单向链表反转 //这里参数node必须为第一个结点即为head->next,不然链表会造成内存泄露 inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node) { _Slist_node_base* __result = __node; __node = __node->_M_next; __result->_M_next = 0;//链表尾部 while(__node) {//链表非空 _Slist_node_base* __next = __node->_M_next; __node->_M_next = __result; __result = __node; __node = __next; } return __result; } //返回链表大小 //节点参数node必须为第一个节点即为head->next; inline size_t __slist_size(_Slist_node_base* __node) { size_t __result = 0; for ( ; __node != 0; __node = __node->_M_next)//遍历链表节点 ++__result; return __result; } //单向链表的迭代器的基本结构 struct _Slist_iterator_base { typedef size_t size_type; typedef ptrdiff_t difference_type; typedef forward_iterator_tag iterator_category;//正向迭代器 _Slist_node_base* _M_node;//链表节点指针 _Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {} void _M_incr() { _M_node = _M_node->_M_next; }//前移一个节点 bool operator==(const _Slist_iterator_base& __x) const { return _M_node == __x._M_node;//节点指针指向相同位置 } bool operator!=(const _Slist_iterator_base& __x) const { return _M_node != __x._M_node;//节点指针指向不同位置 } }; //单向链表迭代器结构 template <class _Tp, class _Ref, class _Ptr> struct _Slist_iterator : public _Slist_iterator_base { typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator; typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; typedef _Slist_iterator<_Tp, _Ref, _Ptr> _Self; typedef _Tp value_type; typedef _Ptr pointer; typedef _Ref reference; typedef _Slist_node<_Tp> _Node; _Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {} _Slist_iterator() : _Slist_iterator_base(0) {} _Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {} //解除引用,返回节点数据 reference operator*() const { return ((_Node*) _M_node)->_M_data; } #ifndef __SGI_STL_NO_ARROW_OPERATOR pointer operator->() const { return &(operator*()); } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ //前缀operator++ _Self& operator++() { _M_incr(); return *this; } //后缀operator++ _Self operator++(int) { _Self __tmp = *this; _M_incr(); return __tmp; } //单向链表不能operator--操作 }; #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION inline ptrdiff_t* distance_type(const _Slist_iterator_base&) { return 0; } inline forward_iterator_tag iterator_category(const _Slist_iterator_base&) { return forward_iterator_tag(); } template <class _Tp, class _Ref, class _Ptr> inline _Tp* value_type(const _Slist_iterator<_Tp, _Ref, _Ptr>&) { return 0; } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ // Base class that encapsulates details of allocators. Three cases: // an ordinary standard-conforming allocator, a standard-conforming // allocator with no non-static data, and an SGI-style allocator. // This complexity is necessary only because we're worrying about backward // compatibility and because we want to avoid wasting storage on an // allocator instance if it isn't necessary. #ifdef __STL_USE_STD_ALLOCATORS // Base for general standard-conforming allocators. template <class _Tp, class _Allocator, bool _IsStatic> class _Slist_alloc_base { public: typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return _M_node_allocator; } _Slist_alloc_base(const allocator_type& __a) : _M_node_allocator(__a) {} protected: //分配一个节点空间 _Slist_node<_Tp>* _M_get_node() { return _M_node_allocator.allocate(1); } //释放指定的节点空间 void _M_put_node(_Slist_node<_Tp>* __p) { _M_node_allocator.deallocate(__p, 1); } protected: typename _Alloc_traits<_Slist_node<_Tp>,_Allocator>::allocator_type _M_node_allocator; _Slist_node_base _M_head; }; // Specialization for instanceless allocators. template <class _Tp, class _Allocator> class _Slist_alloc_base<_Tp,_Allocator, true> { public: typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return allocator_type(); } _Slist_alloc_base(const allocator_type&) {} protected: typedef typename _Alloc_traits<_Slist_node<_Tp>, _Allocator>::_Alloc_type _Alloc_type; _Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); } void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); } protected: _Slist_node_base _M_head;//链表头 }; template <class _Tp, class _Alloc> struct _Slist_base : public _Slist_alloc_base<_Tp, _Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> { typedef _Slist_alloc_base<_Tp, _Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> _Base; typedef typename _Base::allocator_type allocator_type; _Slist_base(const allocator_type& __a) : _Base(__a) { this->_M_head._M_next = 0; } ~_Slist_base() { _M_erase_after(&this->_M_head, 0); } protected: //擦除指定节点的后一个节点 _Slist_node_base* _M_erase_after(_Slist_node_base* __pos) { _Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next); _Slist_node_base* __next_next = __next->_M_next; __pos->_M_next = __next_next; destroy(&__next->_M_data); _M_put_node(__next); return __next_next; } _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*); }; #else /* __STL_USE_STD_ALLOCATORS */ template <class _Tp, class _Alloc> struct _Slist_base { typedef _Alloc allocator_type; allocator_type get_allocator() const { return allocator_type(); } _Slist_base(const allocator_type&) { _M_head._M_next = 0; } ~_Slist_base() { _M_erase_after(&_M_head, 0); } protected: typedef simple_alloc<_Slist_node<_Tp>, _Alloc> _Alloc_type; _Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); } void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); } _Slist_node_base* _M_erase_after(_Slist_node_base* __pos) { _Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next); _Slist_node_base* __next_next = __next->_M_next; __pos->_M_next = __next_next; destroy(&__next->_M_data); _M_put_node(__next); return __next_next; } _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*); protected: _Slist_node_base _M_head; }; #endif /* __STL_USE_STD_ALLOCATORS */ //擦除(first,last)之间的节点 template <class _Tp, class _Alloc> _Slist_node_base* _Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first, _Slist_node_base* __last_node) { _Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next); while (__cur != __last_node) { _Slist_node<_Tp>* __tmp = __cur; __cur = (_Slist_node<_Tp>*) __cur->_M_next; destroy(&__tmp->_M_data); _M_put_node(__tmp); } __before_first->_M_next = __last_node; return __last_node; } //单向链表slist定义 template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) > class slist : private _Slist_base<_Tp,_Alloc> { // requirements: __STL_CLASS_REQUIRES(_Tp, _Assignable); private: typedef _Slist_base<_Tp,_Alloc> _Base; public: typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator; typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; typedef typename _Base::allocator_type allocator_type; allocator_type get_allocator() const { return _Base::get_allocator(); } private: typedef _Slist_node<_Tp> _Node; typedef _Slist_node_base _Node_base; typedef _Slist_iterator_base _Iterator_base; //创建初始值为x的节点 _Node* _M_create_node(const value_type& __x) { _Node* __node = this->_M_get_node(); __STL_TRY { construct(&__node->_M_data, __x); __node->_M_next = 0; } __STL_UNWIND(this->_M_put_node(__node)); return __node; } _Node* _M_create_node() { _Node* __node = this->_M_get_node(); __STL_TRY { construct(&__node->_M_data); __node->_M_next = 0; } __STL_UNWIND(this->_M_put_node(__node)); return __node; } public: explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {} slist(size_type __n, const value_type& __x, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_insert_after_fill(&this->_M_head, __n, __x); } explicit slist(size_type __n) : _Base(allocator_type()) { _M_insert_after_fill(&this->_M_head, __n, value_type()); } #ifdef __STL_MEMBER_TEMPLATES // We don't need any dispatching tricks here, because _M_insert_after_range // already does them. template <class _InputIterator> slist(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_insert_after_range(&this->_M_head, __first, __last); } #else /* __STL_MEMBER_TEMPLATES */ slist(const_iterator __first, const_iterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_insert_after_range(&this->_M_head, __first, __last); } slist(const value_type* __first, const value_type* __last, const allocator_type& __a = allocator_type()) : _Base(__a) { _M_insert_after_range(&this->_M_head, __first, __last); } #endif /* __STL_MEMBER_TEMPLATES */ slist(const slist& __x) : _Base(__x.get_allocator()) { _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); } slist& operator= (const slist& __x); ~slist() {} public: // assign(), a generalized assignment member function. Two // versions: one that takes a count, and one that takes a range. // The range version is a member template, so we dispatch on whether // or not the type is an integer. void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); } void _M_fill_assign(size_type __n, const _Tp& __val); #ifdef __STL_MEMBER_TEMPLATES template <class _InputIterator> void assign(_InputIterator __first, _InputIterator __last) { typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_assign_dispatch(__first, __last, _Integral()); } template <class _Integer> void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign((size_type) __n, (_Tp) __val); } template <class _InputIterator> void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type); #endif /* __STL_MEMBER_TEMPLATES */ public: //返回第一个节点迭代器 iterator begin() { return iterator((_Node*)this->_M_head._M_next); } const_iterator begin() const { return const_iterator((_Node*)this->_M_head._M_next);} //返回链表尾部 iterator end() { return iterator(0); } const_iterator end() const { return const_iterator(0); } // Experimental new feature: before_begin() returns a // non-dereferenceable iterator that, when incremented, yields // begin(). This iterator may be used as the argument to // insert_after, erase_after, etc. Note that even for an empty // slist, before_begin() is not the same iterator as end(). It // is always necessary to increment before_begin() at least once to // obtain end(). //链表头 iterator before_begin() { return iterator((_Node*) &this->_M_head); } const_iterator before_begin() const { return const_iterator((_Node*) &this->_M_head); } //返回链表大小 size_type size() const { return __slist_size(this->_M_head._M_next); } size_type max_size() const { return size_type(-1); } //判断是否为空链表 bool empty() const { return this->_M_head._M_next == 0; } //交换链表内容 //实质上只交换指向链表的指针 void swap(slist& __x) { __STD::swap(this->_M_head._M_next, __x._M_head._M_next); } public: //返回第一个节点数据 reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; } const_reference front() const { return ((_Node*) this->_M_head._M_next)->_M_data; } //在链表头部新增节点 void push_front(const value_type& __x) { __slist_make_link(&this->_M_head, _M_create_node(__x)); } void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); } //删除节点 void pop_front() { _Node* __node = (_Node*) this->_M_head._M_next; this->_M_head._M_next = __node->_M_next; destroy(&__node->_M_data); this->_M_put_node(__node); } //返回指定节点的前一个节点 iterator previous(const_iterator __pos) { return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node)); } const_iterator previous(const_iterator __pos) const { return const_iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node)); } private: //在指定节点后面插入值为x的节点 _Node* _M_insert_after(_Node_base* __pos, const value_type& __x) { return (_Node*) (__slist_make_link(__pos, _M_create_node(__x))); } _Node* _M_insert_after(_Node_base* __pos) { return (_Node*) (__slist_make_link(__pos, _M_create_node())); } //在指定节点后面连续插入n个值为x的节点 void _M_insert_after_fill(_Node_base* __pos, size_type __n, const value_type& __x) { for (size_type __i = 0; __i < __n; ++__i) __pos = __slist_make_link(__pos, _M_create_node(__x)); } #ifdef __STL_MEMBER_TEMPLATES // Check whether it's an integral type. If so, it's not an iterator. //在指定节点之后插入[first,last)数据节点 //首先判断输入数据类型是否为整数 template <class _InIter> void _M_insert_after_range(_Node_base* __pos, _InIter __first, _InIter __last) { typedef typename _Is_integer<_InIter>::_Integral _Integral; _M_insert_after_range(__pos, __first, __last, _Integral()); } //若是整数,则在指定节点之后连续插入n个相同节点 template <class _Integer> void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x, __true_type) { _M_insert_after_fill(__pos, __n, __x); } //若不是整数,则一个一个节点一次插入 template <class _InIter> void _M_insert_after_range(_Node_base* __pos, _InIter __first, _InIter __last, __false_type) { while (__first != __last) { __pos = __slist_make_link(__pos, _M_create_node(*__first)); ++__first; } } #else /* __STL_MEMBER_TEMPLATES */ void _M_insert_after_range(_Node_base* __pos, const_iterator __first, const_iterator __last) { while (__first != __last) { __pos = __slist_make_link(__pos, _M_create_node(*__first)); ++__first; } } void _M_insert_after_range(_Node_base* __pos, const value_type* __first, const value_type* __last) { while (__first != __last) { __pos = __slist_make_link(__pos, _M_create_node(*__first)); ++__first; } } #endif /* __STL_MEMBER_TEMPLATES */ public: //对外接口 iterator insert_after(iterator __pos, const value_type& __x) { return iterator(_M_insert_after(__pos._M_node, __x)); } iterator insert_after(iterator __pos) { return insert_after(__pos, value_type()); } void insert_after(iterator __pos, size_type __n, const value_type& __x) { _M_insert_after_fill(__pos._M_node, __n, __x); } #ifdef __STL_MEMBER_TEMPLATES // We don't need any dispatching tricks here, because _M_insert_after_range // already does them. template <class _InIter> void insert_after(iterator __pos, _InIter __first, _InIter __last) { _M_insert_after_range(__pos._M_node, __first, __last); } #else /* __STL_MEMBER_TEMPLATES */ void insert_after(iterator __pos, const_iterator __first, const_iterator __last) { _M_insert_after_range(__pos._M_node, __first, __last); } void insert_after(iterator __pos, const value_type* __first, const value_type* __last) { _M_insert_after_range(__pos._M_node, __first, __last); } #endif /* __STL_MEMBER_TEMPLATES */ //在指定节点之前插入 iterator insert(iterator __pos, const value_type& __x) { //这里首先找出指定节点的前一个节点,然后再把新节点插入到前一节点的后面 return iterator(_M_insert_after(__slist_previous(&this->_M_head, __pos._M_node), __x)); } iterator insert(iterator __pos) { return iterator(_M_insert_after(__slist_previous(&this->_M_head, __pos._M_node), value_type())); } void insert(iterator __pos, size_type __n, const value_type& __x) { _M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node), __n, __x); } #ifdef __STL_MEMBER_TEMPLATES // We don't need any dispatching tricks here, because _M_insert_after_range // already does them. template <class _InIter> void insert(iterator __pos, _InIter __first, _InIter __last) { _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node), __first, __last); } #else /* __STL_MEMBER_TEMPLATES */ void insert(iterator __pos, const_iterator __first, const_iterator __last) { _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node), __first, __last); } void insert(iterator __pos, const value_type* __first, const value_type* __last) { _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node), __first, __last); } #endif /* __STL_MEMBER_TEMPLATES */ public: //在指定节点之后擦除节点 iterator erase_after(iterator __pos) { return iterator((_Node*) this->_M_erase_after(__pos._M_node)); } iterator erase_after(iterator __before_first, iterator __last) { return iterator((_Node*) this->_M_erase_after(__before_first._M_node, __last._M_node)); } iterator erase(iterator __pos) { return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head, __pos._M_node)); } iterator erase(iterator __first, iterator __last) { return (_Node*) this->_M_erase_after( __slist_previous(&this->_M_head, __first._M_node), __last._M_node); } //从新分配单向链表大小 void resize(size_type new_size, const _Tp& __x); void resize(size_type new_size) { resize(new_size, _Tp()); } //清除链表 void clear() { this->_M_erase_after(&this->_M_head, 0); } public: // Moves the range [__before_first + 1, __before_last + 1) to *this, // inserting it immediately after __pos. This is constant time. void splice_after(iterator __pos, iterator __before_first, iterator __before_last) { if (__before_first != __before_last) __slist_splice_after(__pos._M_node, __before_first._M_node, __before_last._M_node); } // Moves the element that follows __prev to *this, inserting it immediately // after __pos. This is constant time. void splice_after(iterator __pos, iterator __prev) { __slist_splice_after(__pos._M_node, __prev._M_node, __prev._M_node->_M_next); } // Removes all of the elements from the list __x to *this, inserting // them immediately after __pos. __x must not be *this. Complexity: // linear in __x.size(). void splice_after(iterator __pos, slist& __x) { __slist_splice_after(__pos._M_node, &__x._M_head); } // Linear in distance(begin(), __pos), and linear in __x.size(). void splice(iterator __pos, slist& __x) { if (__x._M_head._M_next) __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node), &__x._M_head, __slist_previous(&__x._M_head, 0)); } // Linear in distance(begin(), __pos), and in distance(__x.begin(), __i). void splice(iterator __pos, slist& __x, iterator __i) { __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node), __slist_previous(&__x._M_head, __i._M_node), __i._M_node); } // Linear in distance(begin(), __pos), in distance(__x.begin(), __first), // and in distance(__first, __last). void splice(iterator __pos, slist& __x, iterator __first, iterator __last) { if (__first != __last) __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node), __slist_previous(&__x._M_head, __first._M_node), __slist_previous(__first._M_node, __last._M_node)); } public: void reverse() { if (this->_M_head._M_next) this->_M_head._M_next = __slist_reverse(this->_M_head._M_next); } void remove(const _Tp& __val); void unique(); void merge(slist& __x); void sort(); #ifdef __STL_MEMBER_TEMPLATES template <class _Predicate> void remove_if(_Predicate __pred); template <class _BinaryPredicate> void unique(_BinaryPredicate __pred); template <class _StrictWeakOrdering> void merge(slist&, _StrictWeakOrdering); template <class _StrictWeakOrdering> void sort(_StrictWeakOrdering __comp); #endif /* __STL_MEMBER_TEMPLATES */ }; //实现整个单向链表的赋值 template <class _Tp, class _Alloc> slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x) { if (&__x != this) { _Node_base* __p1 = &this->_M_head; _Node* __n1 = (_Node*) this->_M_head._M_next; const _Node* __n2 = (const _Node*) __x._M_head._M_next; while (__n1 && __n2) { __n1->_M_data = __n2->_M_data; __p1 = __n1; __n1 = (_Node*) __n1->_M_next; __n2 = (const _Node*) __n2->_M_next; } if (__n2 == 0)//擦除多余的节点 this->_M_erase_after(__p1, 0); else//插入剩下的节点 _M_insert_after_range(__p1, const_iterator((_Node*)__n2), const_iterator(0)); } return *this; } template <class _Tp, class _Alloc> void slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) { _Node_base* __prev = &this->_M_head; _Node* __node = (_Node*) this->_M_head._M_next; for ( ; __node != 0 && __n > 0 ; --__n) { __node->_M_data = __val; __prev = __node; __node = (_Node*) __node->_M_next; } if (__n > 0) _M_insert_after_fill(__prev, __n, __val); else this->_M_erase_after(__prev, 0); } #ifdef __STL_MEMBER_TEMPLATES template <class _Tp, class _Alloc> template <class _InputIter> void slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type) { _Node_base* __prev = &this->_M_head; _Node* __node = (_Node*) this->_M_head._M_next; while (__node != 0 && __first != __last) { __node->_M_data = *__first; __prev = __node; __node = (_Node*) __node->_M_next; ++__first; } if (__first != __last) _M_insert_after_range(__prev, __first, __last); else this->_M_erase_after(__prev, 0); } #endif /* __STL_MEMBER_TEMPLATES */ template <class _Tp, class _Alloc> inline bool operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) { typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator; const_iterator __end1 = _SL1.end(); const_iterator __end2 = _SL2.end(); const_iterator __i1 = _SL1.begin(); const_iterator __i2 = _SL2.begin(); while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) { ++__i1; ++__i2; } return __i1 == __end1 && __i2 == __end2; } template <class _Tp, class _Alloc> inline bool operator<(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) { return lexicographical_compare(_SL1.begin(), _SL1.end(), _SL2.begin(), _SL2.end()); } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class _Tp, class _Alloc> inline bool operator!=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) { return !(_SL1 == _SL2); } template <class _Tp, class _Alloc> inline bool operator>(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) { return _SL2 < _SL1; } template <class _Tp, class _Alloc> inline bool operator<=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) { return !(_SL2 < _SL1); } template <class _Tp, class _Alloc> inline bool operator>=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) { return !(_SL1 < _SL2); } template <class _Tp, class _Alloc> inline void swap(slist<_Tp,_Alloc>& __x, slist<_Tp,_Alloc>& __y) { __x.swap(__y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ template <class _Tp, class _Alloc> void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x) { _Node_base* __cur = &this->_M_head; while (__cur->_M_next != 0 && __len > 0) { --__len; __cur = __cur->_M_next; } if (__cur->_M_next) //若新的大小比原来的小 this->_M_erase_after(__cur, 0); else//若新的大小比原来的大 _M_insert_after_fill(__cur, __len, __x); } //删除所有值为val的节点 template <class _Tp, class _Alloc> void slist<_Tp,_Alloc>::remove(const _Tp& __val) { _Node_base* __cur = &this->_M_head; while (__cur && __cur->_M_next) { if (((_Node*) __cur->_M_next)->_M_data == __val) this->_M_erase_after(__cur); else __cur = __cur->_M_next; } } //删除连续相同值的节点,使其唯一 template <class _Tp, class _Alloc> void slist<_Tp,_Alloc>::unique() { _Node_base* __cur = this->_M_head._M_next; if (__cur) { while (__cur->_M_next) { if (((_Node*)__cur)->_M_data == ((_Node*)(__cur->_M_next))->_M_data) this->_M_erase_after(__cur); else __cur = __cur->_M_next; } } } //合并两个有序单链表 template <class _Tp, class _Alloc> void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x) { _Node_base* __n1 = &this->_M_head; while (__n1->_M_next && __x._M_head._M_next) { if (((_Node*) __x._M_head._M_next)->_M_data < ((_Node*) __n1->_M_next)->_M_data) __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next); __n1 = __n1->_M_next; } if (__x._M_head._M_next) { __n1->_M_next = __x._M_head._M_next; __x._M_head._M_next = 0; } } //这里的排序算法跟list的相似 template <class _Tp, class _Alloc> void slist<_Tp,_Alloc>::sort() { if (this->_M_head._M_next && this->_M_head._M_next->_M_next) { slist __carry; slist __counter[64]; int __fill = 0; while (!empty()) { __slist_splice_after(&__carry._M_head, &this->_M_head, this->_M_head._M_next); int __i = 0; while (__i < __fill && !__counter[__i].empty()) { __counter[__i].merge(__carry); __carry.swap(__counter[__i]); ++__i; } __carry.swap(__counter[__i]); if (__i == __fill) ++__fill; } for (int __i = 1; __i < __fill; ++__i) __counter[__i].merge(__counter[__i-1]); this->swap(__counter[__fill-1]); } } #ifdef __STL_MEMBER_TEMPLATES template <class _Tp, class _Alloc> template <class _Predicate> void slist<_Tp,_Alloc>::remove_if(_Predicate __pred) { _Node_base* __cur = &this->_M_head; while (__cur->_M_next) { if (__pred(((_Node*) __cur->_M_next)->_M_data)) this->_M_erase_after(__cur); else __cur = __cur->_M_next; } } template <class _Tp, class _Alloc> template <class _BinaryPredicate> void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred) { _Node* __cur = (_Node*) this->_M_head._M_next; if (__cur) { while (__cur->_M_next) { if (__pred(((_Node*)__cur)->_M_data, ((_Node*)(__cur->_M_next))->_M_data)) this->_M_erase_after(__cur); else __cur = (_Node*) __cur->_M_next; } } } template <class _Tp, class _Alloc> template <class _StrictWeakOrdering> void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x, _StrictWeakOrdering __comp) { _Node_base* __n1 = &this->_M_head; while (__n1->_M_next && __x._M_head._M_next) { if (__comp(((_Node*) __x._M_head._M_next)->_M_data, ((_Node*) __n1->_M_next)->_M_data)) __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next); __n1 = __n1->_M_next; } if (__x._M_head._M_next) { __n1->_M_next = __x._M_head._M_next; __x._M_head._M_next = 0; } } template <class _Tp, class _Alloc> template <class _StrictWeakOrdering> void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp) { if (this->_M_head._M_next && this->_M_head._M_next->_M_next) { slist __carry; slist __counter[64]; int __fill = 0; while (!empty()) { __slist_splice_after(&__carry._M_head, &this->_M_head, this->_M_head._M_next); int __i = 0; while (__i < __fill && !__counter[__i].empty()) { __counter[__i].merge(__carry, __comp); __carry.swap(__counter[__i]); ++__i; } __carry.swap(__counter[__i]); if (__i == __fill) ++__fill; } for (int __i = 1; __i < __fill; ++__i) __counter[__i].merge(__counter[__i-1], __comp); this->swap(__counter[__fill-1]); } } #endif /* __STL_MEMBER_TEMPLATES */ // Specialization of insert_iterator so that insertions will be constant // time rather than linear time. #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION template <class _Tp, class _Alloc> class insert_iterator<slist<_Tp, _Alloc> > { protected: typedef slist<_Tp, _Alloc> _Container; _Container* container; typename _Container::iterator iter; public: typedef _Container container_type; typedef output_iterator_tag iterator_category; typedef void value_type; typedef void difference_type; typedef void pointer; typedef void reference; insert_iterator(_Container& __x, typename _Container::iterator __i) : container(&__x) { if (__i == __x.begin()) iter = __x.before_begin(); else iter = __x.previous(__i); } insert_iterator<_Container>& operator=(const typename _Container::value_type& __value) { iter = container->insert_after(iter, __value); return *this; } insert_iterator<_Container>& operator*() { return *this; } insert_iterator<_Container>& operator++() { return *this; } insert_iterator<_Container>& operator++(int) { return *this; } }; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #pragma reset woff 1375 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_SLIST_H */ // Local Variables: // mode:C++ // End: ~~~ 参考资料: 《STL源码剖析》侯捷 [《STL源码剖析---stl_slist.h阅读笔记》](http://blog.csdn.net/kangroger/article/details/38561817) [《STL源码剖析-- stl_slist.h》](http://blog.csdn.net/mdl13412/article/details/6648134)