ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
### 前言   在SGI STL中的容器map,底层实现机制是RB-Tree,是因为map的操作RB-Tree都能实现,有关RB-Tree的剖析请看《[STL源码剖析——RB-Tree](http://blog.csdn.net/chenhanzhun/article/details/39523519)[(红黑树)](http://blog.csdn.net/chenhanzhun/article/details/39523519)》。在map容器键值key和实值value是不相同的,键值key和实值value的比较函数也是不同的。在容器里面的元素是根据元素的键值自动排序的,不能修改map容器的键值,但是可以修改容器的实值。map的所有节点元素都是pair,pair有两个成员变量first,second;第一个first是键值key,第二个second是实值value;有关pair的介绍见前文《[stl_pair.h学习](http://blog.csdn.net/chenhanzhun/article/details/39526719)》剖析。本文的源码出自SGI STL中的<stl_map.h>文件。 ### map容器源码剖析   在源码剖析的时候,会针对一些函数给出例子,例子包含在剖析文件里面。 ~~~ #ifndef __SGI_STL_INTERNAL_MAP_H #define __SGI_STL_INTERNAL_MAP_H #include <concept_checks.h> __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1174 #pragma set woff 1375 #endif /* map的所有节点元素都是pair,pair有两个成员变量first,second 第一个first是键值key,第二个second是实值value 有关pair的定义见前文<stl_pair.h>剖析 */ //map内部元素根据键值key默认使用递增排序less //用户可自行制定比较类型 //内部维护的数据结构是红黑树, 具有非常优秀的最坏情况的时间复杂度 //注意:map键值和实值是分开的,map的键值key是唯一的,实值value可以重复 //不能通过迭代器修改map的键值key,其迭代器类型是定义为RB-Tree的const_iterator //但是可以通过迭代器修改map的实值value // Forward declarations of operators == and <, needed for friend declarations. template <class _Key, class _Tp, class _Compare __STL_DEPENDENT_DEFAULT_TMPL(less<_Key>), class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) > class map; template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y); template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y); //map定义 template <class _Key, class _Tp, class _Compare, class _Alloc> class map { public: // requirements: __STL_CLASS_REQUIRES(_Tp, _Assignable); __STL_CLASS_BINARY_FUNCTION_CHECK(_Compare, bool, _Key, _Key); // typedefs: typedef _Key key_type;//键值key类型 typedef _Tp data_type;//数据(实值)value类型 typedef _Tp mapped_type; typedef pair<const _Key, _Tp> value_type;//元素型别,包含(键值/实值),const保证键值key不被修改 typedef _Compare key_compare;//键值key比较函数 //嵌套类,提供键值key比较函数接口 //继承自<stl_function.h>中的binary_function /* template <class _Arg1, class _Arg2, class _Result> struct binary_function { typedef _Arg1 first_argument_type; typedef _Arg2 second_argument_type; typedef _Result result_type; }; */ class value_compare : public binary_function<value_type, value_type, bool> { friend class map<_Key,_Tp,_Compare,_Alloc>; protected : _Compare comp; value_compare(_Compare __c) : comp(__c) {} public: bool operator()(const value_type& __x, const value_type& __y) const { return comp(__x.first, __y.first);//以键值调用比较函数 } }; private: //底层机制是RB-Tree //以map类型(一个pair)的第一个类型作为TB-tree的键值类型. //所以在RB-tree中,键值key不能修改 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, key_compare, _Alloc> _Rep_type; _Rep_type _M_t; // red-black tree representing map public: typedef typename _Rep_type::pointer pointer; typedef typename _Rep_type::const_pointer const_pointer; typedef typename _Rep_type::reference reference; typedef typename _Rep_type::const_reference const_reference; //map的迭代器不直接定义为const_iterator,而是分别定义iterator,const_iterator //是因为map的键值key不能被修改,所以必须定义为const_iterator //而map的实值value可以被修改,则定义为iterator typedef typename _Rep_type::iterator iterator; typedef typename _Rep_type::const_iterator const_iterator; typedef typename _Rep_type::reverse_iterator reverse_iterator; typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; typedef typename _Rep_type::size_type size_type; typedef typename _Rep_type::difference_type difference_type; typedef typename _Rep_type::allocator_type allocator_type; // allocation/deallocation // map只能使用RB-tree的insert-unique(),不能使用insert-equal() //因为必须保证键值唯一 /* 构造函数 map(); explicit map (const key_compare& comp = key_compare(), const allocator_type& alloc = allocator_type()); template <class InputIterator> map (InputIterator first, InputIterator last, const key_compare& comp = key_compare(), const allocator_type& alloc = allocator_type()); map (const map& x); */ /* example: #include <iostream> #include <map> bool fncomp (char lhs, char rhs) {return lhs<rhs;} struct classcomp { bool operator() (const char& lhs, const char& rhs) const {return lhs<rhs;} }; int main () { std::map<char,int> first; first['a']=10; first['b']=30; first['c']=50; first['d']=70; std::map<char,int> second (first.begin(),first.end()); std::map<char,int> third (second); std::map<char,int,classcomp> fourth; // class as Compare bool(*fn_pt)(char,char) = fncomp; std::map<char,int,bool(*)(char,char)> fifth (fn_pt); // function pointer as Compare return 0; } */ map() : _M_t(_Compare(), allocator_type()) {} explicit map(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) {} #ifdef __STL_MEMBER_TEMPLATES template <class _InputIterator> map(_InputIterator __first, _InputIterator __last) : _M_t(_Compare(), allocator_type()) { _M_t.insert_unique(__first, __last); } template <class _InputIterator> map(_InputIterator __first, _InputIterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); } #else map(const value_type* __first, const value_type* __last) : _M_t(_Compare(), allocator_type()) { _M_t.insert_unique(__first, __last); } map(const value_type* __first, const value_type* __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); } map(const_iterator __first, const_iterator __last) : _M_t(_Compare(), allocator_type()) { _M_t.insert_unique(__first, __last); } map(const_iterator __first, const_iterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); } #endif /* __STL_MEMBER_TEMPLATES */ //拷贝构造函数 map(const map<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) {} //这里提供了operator=,即可以通过=初始化对象 map<_Key,_Tp,_Compare,_Alloc>& operator=(const map<_Key, _Tp, _Compare, _Alloc>& __x) { _M_t = __x._M_t; return *this; } // accessors: //以下调用RB-Tree的操作 //返回键值的比较函数,这里是调用RB-Tree的key_comp() key_compare key_comp() const { return _M_t.key_comp(); } //返回实值的比较函数 //这里调用的是map嵌套类中定义的比较函数 /* class value_compare : public binary_function<value_type, value_type, bool> { friend class map<_Key,_Tp,_Compare,_Alloc>; protected : _Compare comp; value_compare(_Compare __c) : comp(__c) {} public: bool operator()(const value_type& __x, const value_type& __y) const { return comp(__x.first, __y.first);//以键值调用比较函数 } */ //实际上最终还是调用键值key的比较函数,即他们是调用同一个比较函数 value_compare value_comp() const { return value_compare(_M_t.key_comp()); } //获得分配器的类型 allocator_type get_allocator() const { return _M_t.get_allocator(); } iterator begin() { return _M_t.begin(); } const_iterator begin() const { return _M_t.begin(); } iterator end() { return _M_t.end(); } const_iterator end() const { return _M_t.end(); } reverse_iterator rbegin() { return _M_t.rbegin(); } const_reverse_iterator rbegin() const { return _M_t.rbegin(); } reverse_iterator rend() { return _M_t.rend(); } const_reverse_iterator rend() const { return _M_t.rend(); } bool empty() const { return _M_t.empty(); } size_type size() const { return _M_t.size(); } size_type max_size() const { return _M_t.max_size(); } //重载operator[],返回是实值value(即pair.second)的引用 //注意:若你原先没有定义map对象,即你访问的键值key不存在,则会自动新建一个map对象 //键值key为你访问的键值key,实值value为空,看下面的例子就明白了 _Tp& operator[](const key_type& __k) { iterator __i = lower_bound(__k); // __i->first is greater than or equivalent to __k. if (__i == end() || key_comp()(__k, (*__i).first)) __i = insert(__i, value_type(__k, _Tp())); return (*__i).second; //其实简单的方式是直接返回 //return (*((insert(value_type(k, T()))).first)).second; } /* example: #include <iostream> #include <map> #include <string> int main () { std::map<char,std::string> mymap; mymap['a']="an element"; mymap['b']="another element"; mymap['c']=mymap['b']; std::cout << "mymap['a'] is " << mymap['a'] << '\n'; std::cout << "mymap['b'] is " << mymap['b'] << '\n'; std::cout << "mymap['c'] is " << mymap['c'] << '\n'; std::cout << "mymap['d'] is " << mymap['d'] << '\n'; std::cout << "mymap now contains " << mymap.size() << " elements.\n"; return 0; } Ouput: mymap['a'] is an element mymap['b'] is another element mymap['c'] is another element mymap['d'] is mymap now contains 4 elements. */ //交换map对象的内容 void swap(map<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); } // insert/erase /* 插入元素 single element (1): pair<iterator,bool> insert (const value_type& val); with hint (2): iterator insert (iterator position, const value_type& val); range (3): template <class InputIterator> void insert (InputIterator first, InputIterator last); */ //插入元素节点,调用RB-Tree的insert_unique(__x); //不能插入相同键值的元素 pair<iterator,bool> insert(const value_type& __x) { return _M_t.insert_unique(__x); } //在指定位置插入元素,但是会先遍历该集合,判断是否存在相同元素 //若不存在才在指定位置插入该元素 iterator insert(iterator position, const value_type& __x) { return _M_t.insert_unique(position, __x); } #ifdef __STL_MEMBER_TEMPLATES template <class _InputIterator> void insert(_InputIterator __first, _InputIterator __last) { _M_t.insert_unique(__first, __last); } #else void insert(const value_type* __first, const value_type* __last) { _M_t.insert_unique(__first, __last); } void insert(const_iterator __first, const_iterator __last) { _M_t.insert_unique(__first, __last); } #endif /* __STL_MEMBER_TEMPLATES */ /* 擦除元素 void erase (iterator position); size_type erase (const key_type& k); void erase (iterator first, iterator last); */ //在指定位置擦除元素 void erase(iterator __position) { _M_t.erase(__position); } //擦除指定键值的节点 size_type erase(const key_type& __x) { return _M_t.erase(__x); } //擦除指定区间的节点 void erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } //清空map void clear() { _M_t.clear(); } // map operations: //查找指定键值的节点 iterator find(const key_type& __x) { return _M_t.find(__x); } const_iterator find(const key_type& __x) const { return _M_t.find(__x); } //计算指定键值元素的个数 size_type count(const key_type& __x) const { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } /* Example: #include <iostream> #include <map> int main () { std::map<char,int> mymap; std::map<char,int>::iterator itlow,itup; mymap['a']=20; mymap['b']=40; mymap['c']=60; mymap['d']=80; mymap['e']=100; itlow=mymap.lower_bound ('b'); // itlow points to b itup=mymap.upper_bound ('d'); // itup points to e (not d!) mymap.erase(itlow,itup); // erases [itlow,itup) // print content: for (std::map<char,int>::iterator it=mymap.begin(); it!=mymap.end(); ++it) std::cout << it->first << " => " << it->second << '\n'; return 0; } Output: a => 20 e => 100 */ //Returns an iterator pointing to the first element in the container //whose key is not considered to go before k (i.e., either it is equivalent or goes after). //this->first is greater than or equivalent to __x. iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); } const_iterator lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } //Returns an iterator pointing to the first element that is greater than key. iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); } const_iterator upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); } //Returns the bounds of a range that includes all the elements in the container //which have a key equivalent to k //Because the elements in a map container have unique keys, //the range returned will contain a single element at most. pair<iterator,iterator> equal_range(const key_type& __x) { return _M_t.equal_range(__x); } pair<const_iterator,const_iterator> equal_range(const key_type& __x) const { return _M_t.equal_range(__x); } /* Example: #include <iostream> #include <map> int main () { std::map<char,int> mymap; mymap['a']=10; mymap['b']=20; mymap['c']=30; std::pair<std::map<char,int>::iterator,std::map<char,int>::iterator> ret; ret = mymap.equal_range('b'); std::cout << "lower bound points to: "; std::cout << ret.first->first << " => " << ret.first->second << '\n'; std::cout << "upper bound points to: "; std::cout << ret.second->first << " => " << ret.second->second << '\n'; return 0; } Output: lower bound points to: 'b' => 20 upper bound points to: 'c' => 30 */ //以下是操作符重载 #ifdef __STL_TEMPLATE_FRIENDS template <class _K1, class _T1, class _C1, class _A1> friend bool operator== (const map<_K1, _T1, _C1, _A1>&, const map<_K1, _T1, _C1, _A1>&); template <class _K1, class _T1, class _C1, class _A1> friend bool operator< (const map<_K1, _T1, _C1, _A1>&, const map<_K1, _T1, _C1, _A1>&); #else /* __STL_TEMPLATE_FRIENDS */ friend bool __STD_QUALIFIER operator== __STL_NULL_TMPL_ARGS (const map&, const map&); friend bool __STD_QUALIFIER operator< __STL_NULL_TMPL_ARGS (const map&, const map&); #endif /* __STL_TEMPLATE_FRIENDS */ }; //比较两个map的内容 template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return __x._M_t == __y._M_t; } template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return __x._M_t < __y._M_t; } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return !(__x == __y); } template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return __y < __x; } template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return !(__y < __x); } template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x, const map<_Key,_Tp,_Compare,_Alloc>& __y) { return !(__x < __y); } template <class _Key, class _Tp, class _Compare, class _Alloc> inline void swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y) { __x.swap(__y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #pragma reset woff 1375 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_MAP_H */ // Local Variables: // mode:C++ // End: ~~~ 参考资料: 《STL源码剖析》侯捷 《[STL源码剖析-- stl_map.h](http://blog.csdn.net/mdl13412/article/details/6655581)》