# 装饰器
[说明] Decorator 提案经过了大幅修改,目前还没有定案,不知道语法会不会再变。下面的内容完全依据以前的提案,已经有点过时了。等待定案以后,需要完全重写。
装饰器(Decorator)是一种与类(class)相关的语法,用来注释或修改类和类方法。许多面向对象的语言都有这项功能,目前有一个[提案](https://github.com/tc39/proposal-decorators)将其引入了 ECMAScript。
装饰器是一种函数,写成`@ + 函数名`。它可以放在类和类方法的定义前面。
```javascript
@frozen class Foo {
@configurable(false)
@enumerable(true)
method() {}
@throttle(500)
expensiveMethod() {}
}
```
上面代码一共使用了四个装饰器,一个用在类本身,另外三个用在类方法。它们不仅增加了代码的可读性,清晰地表达了意图,而且提供一种方便的手段,增加或修改类的功能。
## 类的装饰
装饰器可以用来装饰整个类。
```javascript
@testable
class MyTestableClass {
// ...
}
function testable(target) {
target.isTestable = true;
}
MyTestableClass.isTestable // true
```
上面代码中,`@testable`就是一个装饰器。它修改了`MyTestableClass`这个类的行为,为它加上了静态属性`isTestable`。`testable`函数的参数`target`是`MyTestableClass`类本身。
基本上,装饰器的行为就是下面这样。
```javascript
@decorator
class A {}
// 等同于
class A {}
A = decorator(A) || A;
```
也就是说,装饰器是一个对类进行处理的函数。装饰器函数的第一个参数,就是所要装饰的目标类。
```javascript
function testable(target) {
// ...
}
```
上面代码中,`testable`函数的参数`target`,就是会被装饰的类。
如果觉得一个参数不够用,可以在装饰器外面再封装一层函数。
```javascript
function testable(isTestable) {
return function(target) {
target.isTestable = isTestable;
}
}
@testable(true)
class MyTestableClass {}
MyTestableClass.isTestable // true
@testable(false)
class MyClass {}
MyClass.isTestable // false
```
上面代码中,装饰器`testable`可以接受参数,这就等于可以修改装饰器的行为。
注意,装饰器对类的行为的改变,是代码编译时发生的,而不是在运行时。这意味着,装饰器能在编译阶段运行代码。也就是说,装饰器本质就是编译时执行的函数。
前面的例子是为类添加一个静态属性,如果想添加实例属性,可以通过目标类的`prototype`对象操作。
```javascript
function testable(target) {
target.prototype.isTestable = true;
}
@testable
class MyTestableClass {}
let obj = new MyTestableClass();
obj.isTestable // true
```
上面代码中,装饰器函数`testable`是在目标类的`prototype`对象上添加属性,因此就可以在实例上调用。
下面是另外一个例子。
```javascript
// mixins.js
export function mixins(...list) {
return function (target) {
Object.assign(target.prototype, ...list)
}
}
// main.js
import { mixins } from './mixins'
const Foo = {
foo() { console.log('foo') }
};
@mixins(Foo)
class MyClass {}
let obj = new MyClass();
obj.foo() // 'foo'
```
上面代码通过装饰器`mixins`,把`Foo`对象的方法添加到了`MyClass`的实例上面。可以用`Object.assign()`模拟这个功能。
```javascript
const Foo = {
foo() { console.log('foo') }
};
class MyClass {}
Object.assign(MyClass.prototype, Foo);
let obj = new MyClass();
obj.foo() // 'foo'
```
实际开发中,React 与 Redux 库结合使用时,常常需要写成下面这样。
```javascript
class MyReactComponent extends React.Component {}
export default connect(mapStateToProps, mapDispatchToProps)(MyReactComponent);
```
有了装饰器,就可以改写上面的代码。
```javascript
@connect(mapStateToProps, mapDispatchToProps)
export default class MyReactComponent extends React.Component {}
```
相对来说,后一种写法看上去更容易理解。
## 方法的装饰
装饰器不仅可以装饰类,还可以装饰类的属性。
```javascript
class Person {
@readonly
name() { return `${this.first} ${this.last}` }
}
```
上面代码中,装饰器`readonly`用来装饰“类”的`name`方法。
装饰器函数`readonly`一共可以接受三个参数。
```javascript
function readonly(target, name, descriptor){
// descriptor对象原来的值如下
// {
// value: specifiedFunction,
// enumerable: false,
// configurable: true,
// writable: true
// };
descriptor.writable = false;
return descriptor;
}
readonly(Person.prototype, 'name', descriptor);
// 类似于
Object.defineProperty(Person.prototype, 'name', descriptor);
```
装饰器第一个参数是类的原型对象,上例是`Person.prototype`,装饰器的本意是要“装饰”类的实例,但是这个时候实例还没生成,所以只能去装饰原型(这不同于类的装饰,那种情况时`target`参数指的是类本身);第二个参数是所要装饰的属性名,第三个参数是该属性的描述对象。
另外,上面代码说明,装饰器(readonly)会修改属性的描述对象(descriptor),然后被修改的描述对象再用来定义属性。
下面是另一个例子,修改属性描述对象的`enumerable`属性,使得该属性不可遍历。
```javascript
class Person {
@nonenumerable
get kidCount() { return this.children.length; }
}
function nonenumerable(target, name, descriptor) {
descriptor.enumerable = false;
return descriptor;
}
```
下面的`@log`装饰器,可以起到输出日志的作用。
```javascript
class Math {
@log
add(a, b) {
return a + b;
}
}
function log(target, name, descriptor) {
var oldValue = descriptor.value;
descriptor.value = function() {
console.log(`Calling ${name} with`, arguments);
return oldValue.apply(this, arguments);
};
return descriptor;
}
const math = new Math();
// passed parameters should get logged now
math.add(2, 4);
```
上面代码中,`@log`装饰器的作用就是在执行原始的操作之前,执行一次`console.log`,从而达到输出日志的目的。
装饰器有注释的作用。
```javascript
@testable
class Person {
@readonly
@nonenumerable
name() { return `${this.first} ${this.last}` }
}
```
从上面代码中,我们一眼就能看出,`Person`类是可测试的,而`name`方法是只读和不可枚举的。
下面是使用 Decorator 写法的[组件](https://github.com/ionic-team/stencil),看上去一目了然。
```javascript
@Component({
tag: 'my-component',
styleUrl: 'my-component.scss'
})
export class MyComponent {
@Prop() first: string;
@Prop() last: string;
@State() isVisible: boolean = true;
render() {
return (
<p>Hello, my name is {this.first} {this.last}</p>
);
}
}
```
如果同一个方法有多个装饰器,会像剥洋葱一样,先从外到内进入,然后由内向外执行。
```javascript
function dec(id){
console.log('evaluated', id);
return (target, property, descriptor) => console.log('executed', id);
}
class Example {
@dec(1)
@dec(2)
method(){}
}
// evaluated 1
// evaluated 2
// executed 2
// executed 1
```
上面代码中,外层装饰器`@dec(1)`先进入,但是内层装饰器`@dec(2)`先执行。
除了注释,装饰器还能用来类型检查。所以,对于类来说,这项功能相当有用。从长期来看,它将是 JavaScript 代码静态分析的重要工具。
## 为什么装饰器不能用于函数?
装饰器只能用于类和类的方法,不能用于函数,因为存在函数提升。
```javascript
var counter = 0;
var add = function () {
counter++;
};
@add
function foo() {
}
```
上面的代码,意图是执行后`counter`等于 1,但是实际上结果是`counter`等于 0。因为函数提升,使得实际执行的代码是下面这样。
```javascript
var counter;
var add;
@add
function foo() {
}
counter = 0;
add = function () {
counter++;
};
```
下面是另一个例子。
```javascript
var readOnly = require("some-decorator");
@readOnly
function foo() {
}
```
上面代码也有问题,因为实际执行是下面这样。
```javascript
var readOnly;
@readOnly
function foo() {
}
readOnly = require("some-decorator");
```
总之,由于存在函数提升,使得装饰器不能用于函数。类是不会提升的,所以就没有这方面的问题。
另一方面,如果一定要装饰函数,可以采用高阶函数的形式直接执行。
```javascript
function doSomething(name) {
console.log('Hello, ' + name);
}
function loggingDecorator(wrapped) {
return function() {
console.log('Starting');
const result = wrapped.apply(this, arguments);
console.log('Finished');
return result;
}
}
const wrapped = loggingDecorator(doSomething);
```
## core-decorators.js
[core-decorators.js](https://github.com/jayphelps/core-decorators.js)是一个第三方模块,提供了几个常见的装饰器,通过它可以更好地理解装饰器。
**(1)@autobind**
`autobind`装饰器使得方法中的`this`对象,绑定原始对象。
```javascript
import { autobind } from 'core-decorators';
class Person {
@autobind
getPerson() {
return this;
}
}
let person = new Person();
let getPerson = person.getPerson;
getPerson() === person;
// true
```
**(2)@readonly**
`readonly`装饰器使得属性或方法不可写。
```javascript
import { readonly } from 'core-decorators';
class Meal {
@readonly
entree = 'steak';
}
var dinner = new Meal();
dinner.entree = 'salmon';
// Cannot assign to read only property 'entree' of [object Object]
```
**(3)@override**
`override`装饰器检查子类的方法,是否正确覆盖了父类的同名方法,如果不正确会报错。
```javascript
import { override } from 'core-decorators';
class Parent {
speak(first, second) {}
}
class Child extends Parent {
@override
speak() {}
// SyntaxError: Child#speak() does not properly override Parent#speak(first, second)
}
// or
class Child extends Parent {
@override
speaks() {}
// SyntaxError: No descriptor matching Child#speaks() was found on the prototype chain.
//
// Did you mean "speak"?
}
```
**(4)@deprecate (别名@deprecated)**
`deprecate`或`deprecated`装饰器在控制台显示一条警告,表示该方法将废除。
```javascript
import { deprecate } from 'core-decorators';
class Person {
@deprecate
facepalm() {}
@deprecate('We stopped facepalming')
facepalmHard() {}
@deprecate('We stopped facepalming', { url: 'http://knowyourmeme.com/memes/facepalm' })
facepalmHarder() {}
}
let person = new Person();
person.facepalm();
// DEPRECATION Person#facepalm: This function will be removed in future versions.
person.facepalmHard();
// DEPRECATION Person#facepalmHard: We stopped facepalming
person.facepalmHarder();
// DEPRECATION Person#facepalmHarder: We stopped facepalming
//
// See http://knowyourmeme.com/memes/facepalm for more details.
//
```
**(5)@suppressWarnings**
`suppressWarnings`装饰器抑制`deprecated`装饰器导致的`console.warn()`调用。但是,异步代码发出的调用除外。
```javascript
import { suppressWarnings } from 'core-decorators';
class Person {
@deprecated
facepalm() {}
@suppressWarnings
facepalmWithoutWarning() {
this.facepalm();
}
}
let person = new Person();
person.facepalmWithoutWarning();
// no warning is logged
```
## 使用装饰器实现自动发布事件
我们可以使用装饰器,使得对象的方法被调用时,自动发出一个事件。
```javascript
const postal = require("postal/lib/postal.lodash");
export default function publish(topic, channel) {
const channelName = channel || '/';
const msgChannel = postal.channel(channelName);
msgChannel.subscribe(topic, v => {
console.log('频道: ', channelName);
console.log('事件: ', topic);
console.log('数据: ', v);
});
return function(target, name, descriptor) {
const fn = descriptor.value;
descriptor.value = function() {
let value = fn.apply(this, arguments);
msgChannel.publish(topic, value);
};
};
}
```
上面代码定义了一个名为`publish`的装饰器,它通过改写`descriptor.value`,使得原方法被调用时,会自动发出一个事件。它使用的事件“发布/订阅”库是[Postal.js](https://github.com/postaljs/postal.js)。
它的用法如下。
```javascript
// index.js
import publish from './publish';
class FooComponent {
@publish('foo.some.message', 'component')
someMethod() {
return { my: 'data' };
}
@publish('foo.some.other')
anotherMethod() {
// ...
}
}
let foo = new FooComponent();
foo.someMethod();
foo.anotherMethod();
```
以后,只要调用`someMethod`或者`anotherMethod`,就会自动发出一个事件。
```bash
$ bash-node index.js
频道: component
事件: foo.some.message
数据: { my: 'data' }
频道: /
事件: foo.some.other
数据: undefined
```
## Mixin
在装饰器的基础上,可以实现`Mixin`模式。所谓`Mixin`模式,就是对象继承的一种替代方案,中文译为“混入”(mix in),意为在一个对象之中混入另外一个对象的方法。
请看下面的例子。
```javascript
const Foo = {
foo() { console.log('foo') }
};
class MyClass {}
Object.assign(MyClass.prototype, Foo);
let obj = new MyClass();
obj.foo() // 'foo'
```
上面代码之中,对象`Foo`有一个`foo`方法,通过`Object.assign`方法,可以将`foo`方法“混入”`MyClass`类,导致`MyClass`的实例`obj`对象都具有`foo`方法。这就是“混入”模式的一个简单实现。
下面,我们部署一个通用脚本`mixins.js`,将 Mixin 写成一个装饰器。
```javascript
export function mixins(...list) {
return function (target) {
Object.assign(target.prototype, ...list);
};
}
```
然后,就可以使用上面这个装饰器,为类“混入”各种方法。
```javascript
import { mixins } from './mixins';
const Foo = {
foo() { console.log('foo') }
};
@mixins(Foo)
class MyClass {}
let obj = new MyClass();
obj.foo() // "foo"
```
通过`mixins`这个装饰器,实现了在`MyClass`类上面“混入”`Foo`对象的`foo`方法。
不过,上面的方法会改写`MyClass`类的`prototype`对象,如果不喜欢这一点,也可以通过类的继承实现 Mixin。
```javascript
class MyClass extends MyBaseClass {
/* ... */
}
```
上面代码中,`MyClass`继承了`MyBaseClass`。如果我们想在`MyClass`里面“混入”一个`foo`方法,一个办法是在`MyClass`和`MyBaseClass`之间插入一个混入类,这个类具有`foo`方法,并且继承了`MyBaseClass`的所有方法,然后`MyClass`再继承这个类。
```javascript
let MyMixin = (superclass) => class extends superclass {
foo() {
console.log('foo from MyMixin');
}
};
```
上面代码中,`MyMixin`是一个混入类生成器,接受`superclass`作为参数,然后返回一个继承`superclass`的子类,该子类包含一个`foo`方法。
接着,目标类再去继承这个混入类,就达到了“混入”`foo`方法的目的。
```javascript
class MyClass extends MyMixin(MyBaseClass) {
/* ... */
}
let c = new MyClass();
c.foo(); // "foo from MyMixin"
```
如果需要“混入”多个方法,就生成多个混入类。
```javascript
class MyClass extends Mixin1(Mixin2(MyBaseClass)) {
/* ... */
}
```
这种写法的一个好处,是可以调用`super`,因此可以避免在“混入”过程中覆盖父类的同名方法。
```javascript
let Mixin1 = (superclass) => class extends superclass {
foo() {
console.log('foo from Mixin1');
if (super.foo) super.foo();
}
};
let Mixin2 = (superclass) => class extends superclass {
foo() {
console.log('foo from Mixin2');
if (super.foo) super.foo();
}
};
class S {
foo() {
console.log('foo from S');
}
}
class C extends Mixin1(Mixin2(S)) {
foo() {
console.log('foo from C');
super.foo();
}
}
```
上面代码中,每一次`混入`发生时,都调用了父类的`super.foo`方法,导致父类的同名方法没有被覆盖,行为被保留了下来。
```javascript
new C().foo()
// foo from C
// foo from Mixin1
// foo from Mixin2
// foo from S
```
## Trait
Trait 也是一种装饰器,效果与 Mixin 类似,但是提供更多功能,比如防止同名方法的冲突、排除混入某些方法、为混入的方法起别名等等。
下面采用[traits-decorator](https://github.com/CocktailJS/traits-decorator)这个第三方模块作为例子。这个模块提供的`traits`装饰器,不仅可以接受对象,还可以接受 ES6 类作为参数。
```javascript
import { traits } from 'traits-decorator';
class TFoo {
foo() { console.log('foo') }
}
const TBar = {
bar() { console.log('bar') }
};
@traits(TFoo, TBar)
class MyClass { }
let obj = new MyClass();
obj.foo() // foo
obj.bar() // bar
```
上面代码中,通过`traits`装饰器,在`MyClass`类上面“混入”了`TFoo`类的`foo`方法和`TBar`对象的`bar`方法。
Trait 不允许“混入”同名方法。
```javascript
import { traits } from 'traits-decorator';
class TFoo {
foo() { console.log('foo') }
}
const TBar = {
bar() { console.log('bar') },
foo() { console.log('foo') }
};
@traits(TFoo, TBar)
class MyClass { }
// 报错
// throw new Error('Method named: ' + methodName + ' is defined twice.');
// ^
// Error: Method named: foo is defined twice.
```
上面代码中,`TFoo`和`TBar`都有`foo`方法,结果`traits`装饰器报错。
一种解决方法是排除`TBar`的`foo`方法。
```javascript
import { traits, excludes } from 'traits-decorator';
class TFoo {
foo() { console.log('foo') }
}
const TBar = {
bar() { console.log('bar') },
foo() { console.log('foo') }
};
@traits(TFoo, TBar::excludes('foo'))
class MyClass { }
let obj = new MyClass();
obj.foo() // foo
obj.bar() // bar
```
上面代码使用绑定运算符(::)在`TBar`上排除`foo`方法,混入时就不会报错了。
另一种方法是为`TBar`的`foo`方法起一个别名。
```javascript
import { traits, alias } from 'traits-decorator';
class TFoo {
foo() { console.log('foo') }
}
const TBar = {
bar() { console.log('bar') },
foo() { console.log('foo') }
};
@traits(TFoo, TBar::alias({foo: 'aliasFoo'}))
class MyClass { }
let obj = new MyClass();
obj.foo() // foo
obj.aliasFoo() // foo
obj.bar() // bar
```
上面代码为`TBar`的`foo`方法起了别名`aliasFoo`,于是`MyClass`也可以混入`TBar`的`foo`方法了。
`alias`和`excludes`方法,可以结合起来使用。
```javascript
@traits(TExample::excludes('foo','bar')::alias({baz:'exampleBaz'}))
class MyClass {}
```
上面代码排除了`TExample`的`foo`方法和`bar`方法,为`baz`方法起了别名`exampleBaz`。
`as`方法则为上面的代码提供了另一种写法。
```javascript
@traits(TExample::as({excludes:['foo', 'bar'], alias: {baz: 'exampleBaz'}}))
class MyClass {}
```
- 前言
- ECMAScript 6简介
- let 和 const 命令
- 变量的解构赋值
- 字符串的扩展
- 字符串的新增方法
- 正则的扩展
- 数值的扩展
- 函数的扩展
- 数组的扩展
- 对象的扩展
- 对象的新增方法
- Symbol
- Set 和 Map 数据结构
- Proxy
- Reflect
- Promise 对象
- Iterator 和 for...of 循环
- Generator 函数的语法
- Generator 函数的异步应用
- async 函数
- Class 的基本语法
- Class 的继承
- Module 的语法
- Module 的加载实现
- 编程风格
- 读懂规格
- 异步遍历器
- ArrayBuffer
- 最新提案
- Decorator
- 参考链接