函数和其他类型一样都属于“一等公民”,其他类型能够实现接口,函数也可以,本节将对结构体与函数实现接口的过程进行对比。
首先给出本节完整的代码:
~~~
package main
import (
"fmt"
)
// 调用器接口
type Invoker interface {
// 需要实现一个Call方法
Call(interface{})
}
// 结构体类型
type Struct struct {
}
// 实现Invoker的Call
func (s *Struct) Call(p interface{}) {
fmt.Println("from struct", p)
}
// 函数定义为类型
type FuncCaller func(interface{})
// 实现Invoker的Call
func (f FuncCaller) Call(p interface{}) {
// 调用f函数本体
f(p)
}
func main() {
// 声明接口变量
var invoker Invoker
// 实例化结构体
s := new(Struct)
// 将实例化的结构体赋值到接口
invoker = s
// 使用接口调用实例化结构体的方法Struct.Call
invoker.Call("hello")
// 将匿名函数转为FuncCaller类型,再赋值给接口
invoker = FuncCaller(func(v interface{}) {
fmt.Println("from function", v)
})
// 使用接口调用FuncCaller.Call,内部会调用函数本体
invoker.Call("hello")
}
~~~
有如下一个接口:
~~~
// 调用器接口
type Invoker interface {
// 需要实现一个Call()方法
Call(interface{})
}
~~~
这个接口需要实现 Call() 方法,调用时会传入一个 interface{} 类型的变量,这种类型的变量表示任意类型的值。
接下来,使用结构体进行接口实现。
## 结构体实现接口
结构体实现 Invoker 接口的代码如下:
~~~
// 结构体类型
type Struct struct {
}
// 实现Invoker的Call
func (s *Struct) Call(p interface{}) {
fmt.Println("from struct", p)
}
~~~
代码说明如下:
* 第 2 行,定义结构体,该例子中的结构体无须任何成员,主要展示实现 Invoker 的方法。
* 第 6 行,Call() 为结构体的方法,该方法的功能是打印 from struct 和传入的 interface{} 类型的值。
将定义的 Struct 类型实例化,并传入接口中进行调用,代码如下:
~~~
// 声明接口变量
var invoker Invoker
// 实例化结构体
s := new(Struct)
// 将实例化的结构体赋值到接口
invoker = s
// 使用接口调用实例化结构体的方法Struct.Call
invoker.Call("hello")
~~~
代码说明如下:
* 第 2 行,声明 Invoker 类型的变量。
* 第 5 行,使用 new 将结构体实例化,此行也可以写为 s:=&Struct。
* 第 8 行,s 类型为 \*Struct,已经实现了 Invoker 接口类型,因此赋值给 invoker 时是成功的。
* 第 11 行,通过接口的 Call() 方法,传入 hello,此时将调用 Struct 结构体的 Call() 方法。
接下来,对比下函数实现结构体的差异。
代码输出如下:
~~~
from struct hello
~~~
## 函数体实现接口
函数的声明不能直接实现接口,需要将函数定义为类型后,使用类型实现结构体,当类型方法被调用时,还需要调用函数本体。
~~~
// 函数定义为类型
type FuncCaller func(interface{})
// 实现Invoker的Call
func (f FuncCaller) Call(p interface{}) {
// 调用f()函数本体
f(p)
}
~~~
代码说明如下:
* 第 2 行,将 func(interface{}) 定义为 FuncCaller 类型。
* 第 5 行,FuncCaller 的 Call() 方法将实现 Invoker 的 Call() 方法。
* 第 8 行,FuncCaller 的 Call() 方法被调用与 func(interface{}) 无关,还需要手动调用函数本体。
上面代码只是定义了函数类型,需要函数本身进行逻辑处理,FuncCaller 无须被实例化,只需要将函数转换为 FuncCaller 类型即可,函数来源可以是命名函数、匿名函数或闭包,参见下面代码:
~~~
// 声明接口变量
var invoker Invoker
// 将匿名函数转为FuncCaller类型, 再赋值给接口
invoker = FuncCaller(func(v interface{}) {
fmt.Println("from function", v)
})
// 使用接口调用FuncCaller.Call, 内部会调用函数本体
invoker.Call("hello")
~~~
代码说明如下:
* 第 2 行,声明接口变量。
* 第 5 行,将 func(v interface{}){} 匿名函数转换为 FuncCaller 类型(函数签名才能转换),此时 FuncCaller 类型实现了 Invoker 的 Call() 方法,赋值给 invoker 接口是成功的。
* 第 10 行,使用接口方法调用。
代码输出如下:
~~~
from function hello
~~~
## HTTP包中的例子
HTTP 包中包含有 Handler 接口定义,代码如下:
~~~
type Handler interface {
ServeHTTP(ResponseWriter, *Request)
}
~~~
Handler 用于定义每个 HTTP 的请求和响应的处理过程。
同时,也可以使用处理函数实现接口,定义如下:
~~~
type HandlerFunc func(ResponseWriter, *Request)
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}
~~~
要使用闭包实现默认的 HTTP 请求处理,可以使用 http.HandleFunc() 函数,函数定义如下:
~~~
func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
DefaultServeMux.HandleFunc(pattern, handler)
}
~~~
而 DefaultServeMux 是 ServeMux 结构,拥有 HandleFunc() 方法,定义如下:
~~~
func (mux *ServeMux) HandleFunc(pattern string, handler func
(ResponseWriter, *Request)) {
mux.Handle(pattern, HandlerFunc(handler))
}
~~~
上面代码将外部传入的函数 handler() 转为 HandlerFunc 类型,HandlerFunc 类型实现了 Handler 的 ServeHTTP 方法,底层可以同时使用各种类型来实现 Handler 接口进行处理。
- 1.Go语言前景
- 2.Go语言环境搭建
- 3.Go语言的基本语法
- 3.1变量
- 3.1.1变量声明
- 3.1.2变量初始化
- 3.1.3多个变量同时赋值
- 3.1.4匿名变量
- 3.1.5变量的作用域
- 3.1.6整型
- 3.1.7浮点类型
- 3.1.8复数
- 3.1.9bool类型
- 3.1.10字符串
- 3.1.11字符类型
- 3.1.12类型转换
- 3.2常量
- 3.1.1const关键字
- 3.2.2模拟枚举
- 4.Go语言的流程控制
- 4.2循环结构
- 4.3键值循环
- 4.4switch语句
- 4.5goto语句
- 4.6break语句
- 4.7continue语句
- 5.Go语言的函数
- 5.1函数声明
- 5.2函数变量
- 5.3函数类型实现接口
- 5.4闭包
- 5.5可变参数
- 5.6defer(延迟执行语句)
- 5.7处理运行时错误
- 5.8宕机(panic)
- 5.9宕机恢复(recover)
- 5.10Test功能测试函数
- 6.Go语言的内置容器
- 6.1数组
- 6.2切片
- 6.3map
- 6.4sync.Map
- 6.5list
- 6.6range
- 7.Go语言的结构体
- 8.Go语言的接口
- 9.Go语言的常用内置包
- 10.Go语言的并发
- 11.Go语言的文件I/O操作
- 12.Go语言的网络编程
- 13.Go语言的反射
- 14.Go语言的数据库编程
- 15.Go语言密码学算法
- 16.Go语言的gin框架
- 17.Go语言的网络爬虫
- 18.Go语言的编译和工具链