### 什么是生产者消费者模式
在工作中,大家可能会碰到这样一种情况:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是广义的,可以是类、函数、线程、进程等)。
> * `生产者`:产生数据的模块,产生数据的时间是不确定的;
> * `消费者`:而处理数据的模块,处理数据的时间是不确定的;
> * `仓库`:在生产者与消费者之间的缓冲区。
![](http://i4.buimg.com/567571/0c14ece97dc969f9.png)
### 生产者消费者模式的优点
#### 1、解耦
假设生产者和消费者分别是两个类。如果让生产者直接调用消费者的某个方法,那 么生产者对于消费者就会产生依赖(也就是`耦合`)。将来如果消费者的代码发生变化, 可能会影响到生产者。而如果两者都依赖于某个缓冲区,两者之间不直接依赖,耦合也 就相应降低了。
举个例子,我们去邮局投递信件,如果不使用邮筒(也就是缓冲区),你必须得把 信直接交给邮递员。有同学会说,直接给邮递员不是挺简单的嘛?其实不简单,你必须 得认识谁是邮递员,才能把信给他(光凭身上穿的制服,万一有人假冒,就惨了)。这 就产生和你和邮递员之间的依赖(相当于生产者和消费者的强耦合)。万一哪天邮递员 换人了,你还要重新认识一下(相当于消费者变化导致修改生产者代码)。而`邮筒`相对 来说比较固定,你依赖它的成本就比较低(相当于和缓冲区之间的`弱耦合`)。
#### 2、支持并发
由于生产者与消费者是两个独立的`并发体`,他们之间是用缓冲区作为桥梁连接,生产者只需要往缓冲区里丢数据,就可以继续生产下一个数据,而消费者只需要从缓冲区了拿数据即可,这样就不会因为彼此的处理速度而发生阻塞。
接上面的例子,如果我们不使用邮筒,我们就得在邮局等邮递员,直到他回来,我们把信件交给他,这期间我们啥事儿都不能干(也就是生产者阻塞),或者邮递员得挨家挨户问,谁要寄信(相当于消费者轮询)。
#### 3、支持忙闲不均
缓冲区还有另一个好处。如果制造数据的速度时快时慢,缓冲区的好处就体现出来 了。当数据制造快的时候,消费者来不及处理,未处理的数据可以暂时存在缓冲区中。 等生产者的制造速度慢下来,消费者再慢慢处理掉。
为了充分复用,我们再拿寄信的例子来说事。假设邮递员一次只能带走1000封信。 万一某次碰上情人节(也可能是圣诞节)送贺卡,需要寄出去的信超过1000封,这时 候邮筒这个缓冲区就派上用场了。邮递员把来不及带走的信暂存在邮筒中,等下次过来 时再拿走。
模块Queue
```
#!/usr/bin/env python
# coding=utf-8
from threading import Thread
from time import sleep
from Queue import Queue
class Producer(Thread):
def __init__(self, worker, queue):
Thread.__init__(self)
self.__worker = worker
self.__queue = queue
def run(self):
while True:
if 0 <= queue.qsize() <= 10:
queue.put('baozi')
print '%s 生产了1个包子, 一共%s个包子' % (self.__worker, queue.qsize())
sleep(1)
elif 10 < queue.qsize() <= 20:
queue.put('baozi')
print '%s 生产了1个包子, 一共%s个包子' % (self.__worker, queue.qsize())
sleep(2)
else:
print 'queue is full rest 3 sec'
sleep(3)
class Consumer(Thread):
def __init__(self, client, queue):
Thread.__init__(self)
self.__client = client
self.__queue = queue
def run(self):
while True:
if queue.empty():
print '赶紧生产,么有包子了'
sleep(1)
else:
queue.get('包子')
# queue.get('包子')
print '%s 消费了2个包子, 还剩%s个包子' % (self.__client, queue.qsize())
sleep(1)
# 先进先出,线程安全
queue = Queue(maxsize=20)
for item in ['yang', 'yuan', '沙僧', '如来', '观音']:
temp = Producer(item, queue)
temp.start()
for item in ['猪八戒', '唐僧']:
temp = Consumer(item, queue)
temp.start()
```
- 前言
- 环境搭建
- pypi
- 打包
- Python 2 和 Python 3 的版本之间差别
- 项目
- 第一部分
- 第1章 基础
- Python安装
- python代码文件类型
- python对象
- 核心数据类型
- 核心数据类型--整型和浮点型
- 核心数据类型--字符串
- str.format
- 核心数据类型--列表
- 核心数据类型--元组
- 核心数据类型--字典
- 核心数据类型--集合
- 核心数据类型--文件对象
- 调用bash
- 标准输入输出
- str-repr
- 字符编码
- 迭代器和生成器
- 第2章 语句和语法
- 赋值语句
- if语句
- while语句
- for语句
- assert
- 第3章 函数
- 函数作用域
- 工厂函数
- 内置函数
- 递归
- 嵌套作用域和lambda
- 参数传递
- 函数式编程
- property可写与可读
- 第5章 模块
- 模块导入
- 模块命名空间
- 相对导入和绝对导入
- 模块重载
- 在模块中隐藏数据
- 过渡性重载
- 第6章 类
- 面向对象还是面向过程?
- 构造函数 析构函数
- call
- 运算符重载
- str()
- 待定
- 即时生成属性
- 多态
- 线程和进程
- thread模块
- threading模块
- threading线程锁
- 糖果机
- multiprocessing
- 阻塞非阻塞同步异步
- 单线程和多线程对比
- 生产者消费者模型
- 第二部分
- 获取系统资源信息
- 获取进程所占的物理内存
- dmidecode获取系统信息
- 网络编程
- 网络基础
- python中的套接字
- socket模块
- 第三部分 高级功能
- 闭包入门
- 闭包的应用
- 装饰器入门
- 装饰器应用
- 第四部分 项目实战
- graphite
- 模块
- collections
- datetime
- Enum
- faker
- fabric
- fileinput
- fire
- fnmatch
- getpass
- glob
- hashlib
- heapq
- json模块
- log
- os
- Paramiko
- parser
- platform
- pyyaml
- Queue
- random
- re
- 特殊符号和字符
- re模块
- shelves
- subprocess
- time
- urllib_urllib2_requests
- urllib urllib2
- requests
- 标准模块ConfigParser
- 扩展模块Mysqldb
- 扩展模块dns
- 扩展模块request
- uuid
- cacheout 缓存库
- delorean 时间
- 附录
- 内置函数
- python实现各种排序算法
- 常见报错
- pymongo
- pyrocksdb
- 常用
- ERROR