前面我们用过的一些内置函数(如数学函数)都会生成结果值。也就是说,调用函数的效果是产生一个新值,一般我们会把这个值赋给变量,或用作表达式的一部分。例如:
~~~
double e = exp(1.0);
double height = radius * sin(angle);
~~~
但到目前为止,我们编写的所有函数都是**void**函数,它们不返回任何值。调用void函数时,常见的是函数调用语句本身占一行,没有赋值操作:
~~~
nLines(3);
countdown(n-1);
~~~
本章我们将学习编写带有返回值的函数,因为没有更好的名字,我索性直接称之为“**有返回值的函数**”。第一个例子是area函数,它以一个double值为参数,返回以给定参数值为半径的圆的面积:
~~~
double area(double radius) {
double pi = acos(-1.0);
double area = pi * radius * radius;
return area;
}
~~~
首先要注意到,该函数定义的开始部分与void函数(如果以“void”开始,则说明这是void函数)不同,这里使用了double,说明函数返回double类型的值。
再就是注意最后一行,这是return语句的一种可选形式,它带了一个返回值。这句话的意思是,”以其后的表达式为返回值,立即从函数返回。“表达式可以非常复杂,所以area函数可以简化为:
~~~
double area(double radius) {
return acos(-1.0) * radius * radius;
}
~~~
另一方面,像area这样的**临时变量**会使调试更容易。不管哪种情况,return语句中表达式的类型必须与函数的返回类型匹配。换句话说,当把函数的返回类型声明为double时,就要保证函数最终会得到一个double值。如果不返回任何表达式,或者返回了类型不匹配的表达式,编译器都会报错。
有时包含多个返回语句是有用的,比如每个分支一个:
~~~
double absoluteValue(double x){
if (x < 0) {
return -x;
} else {
reurn x;
}
}
~~~
这些return语句分布在不同的条件分支中,只有一个能执行。虽然函数可以有多个return语句,但是只要其中一个执行,函数也就随之结束了,不会再执行后面的语句。
return语句后面的代码,或任何不可能执行到的代码,称为“**死代码**”。如果存在死代码,有的编译器会给出警告。
如果return语句在一个条件分支中,必须保证每个可能的路径都能碰到return语句。例如:
~~~
double absoluteValue(double x) {
if(x < 0) {
return –x;
} else if(x > 0) {
return x;
} // 错误
}
~~~
这个函数是错误的,因为当x为0的时候,所有条件都不满足,最终函数找不到相应的return语句。非常不幸,很多C++编译器并不捕捉此类错误,程序可以通过编译并运行,但是当x==0时返回值可能是任意值,而且在不同环境下也可能有不同表现。
现在你可能还是很讨厌看到编译错误信息,但是随着经验的增长,你会意识到:当程序有错误时,不出现编译错误会比出现更糟糕。
有时会有这样的事情,你用一些值测试了absoluteValue函数,而且该函数看起来是可以正常工作的,可是当你把程序交给别人在其他环境下测试时,却出现了不可思议的bug,经过几天的调试你才发现absoluteValue的实现有问题。要是编译器能早发现问题并警告你该多好啊!
从现在开始,如果编译器指出了程序中的错误,请不要抱怨编译器。相反,你应该感谢编译器帮你找出错误,而且节约了你数天的调试时间。有的编译器可以通过选项指定更严格的编译检查并报告所有错误。你要一直开着这些选项。
说句题外话,math库中的fabs函数能够正确计算double变量的绝对值。
- 第1章 编程之路
- 1.1 什么是编程语言
- 1.2 什么是程序
- 1.3 什么是调试
- 1.4 形式语言与自然语言
- 1.5 第一个程序
- 1.6 术语表
- 第2章 变量和类型
- 2.1 更多的输出
- 2.2 值
- 2.3 变量
- 2.4 赋值
- 2.5 输出变量
- 2.6 关键字
- 2.7 操作符
- 2.8 操作顺序
- 2.9 操作符
- 2.10 组合
- 2.11 术语表
- 第3章 函数
- 3.1 浮点数
- 3.2 double到int的转换
- 3.3 数学函数
- 3.4 函数组合
- 3.5 添加新函数
- 3.6 定义与使用
- 3.7 多函数编程
- 3.8 参数与参数值
- 3.9 参数和变量的局部性
- 3.10 多参函数
- 3.11 有返回值的函数
- 3.12 术语表
- 第4章 条件和递归
- 4.1 取模操作符
- 4.2 条件执行
- 4.3 选择执行
- 4.4 链式条件
- 4.5 嵌套条件
- 4.6 return语句
- 4.7 递归
- 4.8 无穷递归
- 4.9 递归函数的栈图
- 4.10 术语表
- 第5章 有返回值的函数
- 5.1 返回值
- 5.2 程序开发
- 5.3 组合
- 5.4 重载
- 5.5 布尔值
- 5.6 布尔变量
- 5.7 逻辑操作符
- 5.8 布尔函数
- 5.9 从main函数返回
- 5.10 深入递归
- 5.11 思路跳跃
- 5.12 又一个例子
- 5.13 术语表
- 第6章 迭代
- 6.1 多次赋值
- 6.2 迭代
- 6.3 while语句
- 6.4 制表
- 6.5 二维表
- 6.6 封装和泛化
- 6.7 函数
- 6.8 再说封装
- 6.9 局部变量
- 6.10 再说泛化
- 6.11 术语表
- 第7章 字符串那些事儿
- 7.1 字符串的容器
- 7.2 apstring变量
- 7.3 从字符串中提取字符
- 7.4 字符串长度
- 7.5 遍历
- 7.6 一个运行时错误
- 7.7 find函数
- 7.8 我们自己的find版本
- 7.9 循环与计数
- 7.10 增量与减量操作符
- 7.11 字符串连接
- 7.12 apstring是可变的
- 7.13 apstring是可比较的
- 7.14 字符分类
- 7.15 其他apstring函数
- 7.16 术语表
- 第8章 结构体
- 8.1 复合值
- 8.2 Point对象
- 8.3 访问实例变量
- 8.4 对结构体的操作
- 8.5 作为参数的结构
- 8.6 传值调用
- 8.7 传引用调用
- 8.8 矩形
- 8.9 作为返回值的结构
- 8.10 按引用传递其他类型
- 8.11 获取用户输入
- 8.12 术语表
- 第9章 再谈结构体
- 9.1 Time结构体
- 9.2 printTime函数
- 9.3 对象函数
- 9.4 纯函数
- 9.5 const参数
- 9.6 修改函数
- 9.7 填充函数
- 9.8 哪个最佳?
- 9.9 增量开发vs高屋建瓴
- 9.10 泛化
- 9.11 算法
- 9.12 术语表
- 第10章 向量
- 10.1 元素访问
- 10.2 向量的复制
- 10.3 for循环
- 10.4 向量的长度
- 10.5 随机数
- 10.6 统计
- 10.7 随机数的向量
- 10.8 计数
- 10.9 检查其他值
- 10.10直方图
- 10.11一次遍历的方案
- 10.12随机种子
- 10.13术语表
- 第11章 成员函数
- 11.1 对象和函数
- 11.2 print
- 11.3 隐式变量访问
- 11.4 另一个例子
- 11.5 再一个例子
- 11.6 更复杂的例子
- 11.8 初始化还是构造?
- 11.7 构造函数
- 11.9 最后一个例子
- 11.10 头文件
- 11.11 术语表
- 第12章 对象的向量
- 12.1 组合
- 12.2 纸牌对象(Card)
- 12.3 printCard函数
- 12.4 equals函数
- 12.5 isGreater函数
- 12.6 纸牌的向量
- 12.7 printDeck函数
- 12.8 查找
- 12.9 二分查找
- 12.10 牌堆与子牌堆
- 12.11 术语表
- 第13章 基于向量的对象
- 13.1 枚举类型
- 13.2 switch语句
- 13.3 牌堆
- 13.4 另一个构造函数
- 13.5 Deck成员函数
- 13.6 洗牌
- 13.7 排序
- 13.8 子牌堆
- 13.9 洗牌与发牌
- 13.10 归并排序
- 13.11 术语表
- 第14章 类与不变式
- 14.1 私有数据和私有类
- 14.2 什么是类?
- 14.3 复数
- 14.4 访问函数(Accessor functions)
- 14.5 输出
- 14.6 复数相关函数(一)
- 14.7 复数相关函数(二)
- 14.8 不变式
- 14.9 先决条件
- 14.10 私有函数
- 14.11 术语表
- 第15章 文件输入/输出与apmatrix类
- 15.1 流
- 15.2 文件输入
- 15.3 文件输出
- 15.4 解析输入
- 15.5 解析数字
- 15.6 集合数据结构Set
- 15.7 apmatrix类
- 15.8 距离矩阵
- 15.9 一个更合理的距离矩阵
- 15.10 术语表