生成表格式数据是能够从循环机制受益的事情之一。举个例子,在计算机成为常用设备之前,人们必须手工计算对数、正余弦以及其他常用的数学函数。为使这类工作更简单,产生了一些书,包含了一些长表格,你可以查出不同函数的值。创建这些表的工作是缓慢而繁琐的,而且结果容易大量出错。
当计算机登上了历史舞台,人们最初的反应是:“太棒了!我们可以用计算机准确无误的生成这些表。”这是个(大部分)正确但短视的看法。没多久,计算机和计算器普及,数学表就过时了。
好吧,应该说基本上过时了。事实上对于某些运算,计算机使用数学表得到一个近似的答案,然后执行计算去改进这个近似解。有些情况下,计算机背后的数学表是有误差的,最著名的就是最初的因特尔奔腾计算浮点除法使用的表。
对数表已经不像以前那么有用了,但它仍然是一个不错的迭代示例。下面这段程序在左边一栏输出一列值,在右边一栏输出其对应的一列对数值:
~~~
double x = 1.0;
while (x < 10.0) {
cout << x << "\t" << log(x) << "\n";
x = x + 1.0;
}
~~~
字符序列\t表示制表符。字符序列\n表示换行符。这些字符序列可以出现在字符串的任意位置,而在此例中,字符串中只有这类字符序列。
~~~
制表符使光标右移至制表结束位置,通常是每8字节制表一次。稍后我们将看到制表符的用途—使多列文本排列整齐。
换行符的作用与endl完全一样,即移动光标到下一行。通常情况,如果换行符单独出现,我就用endl;如果作为字符串的一部分出现,我就用\n。
上面一段程序的输出:
1 0
2 0.693147
3 1.09861
4 1.38629
5 1.60944
6 1.79176
7 1.94591
8 2.07944
9 2.19722
~~~
要是看着上面这些数很奇怪,别忘了log函数是以e为底的。计算机科学中2的幂很重要,因此我们常常要计算以2为底的对数,我们可以通过以下公式实现:
输出语句改为:
~~~
cout << x << "\t" << log(x) / log(2.0) << endl;
~~~
输出:
~~~
1 0
2 1
3 1.58496
4 2
5 2.32193
6 2.58496
7 2.80735
8 3
9 3.16993
~~~
可以看到,第1、2、4、8行为2的整数次幂。如果想求2的其他整数次幂,我们可以修改程序如下:
~~~
double x = 1.0;
while (x < 100.0) {
cout << x << "\t" << log(x) / log(2.0) << endl;
x = x * 2.0;
}
~~~
之前的循环中,我们用一个数去加x,输出一个算术序列;现在我们改用一个数去乘x,输出一个几何级序列。输出结果是:
~~~
1 0
2 1
4 2
8 3
16 4
32 5
64 6
~~~
由于我们在列之间使用的是制表符,所以第二列的位置也就不取决于第一列的数字位数了。
~~~
对数表也许不再有用,但对于和2的整数次幂打交道的计算机科学家而言,则是非常有用。下面出一道习题:修改上面这段程序,使之能一直输出到65536(2^16)。把程序打出来并记住它。
~~~
- 第1章 编程之路
- 1.1 什么是编程语言
- 1.2 什么是程序
- 1.3 什么是调试
- 1.4 形式语言与自然语言
- 1.5 第一个程序
- 1.6 术语表
- 第2章 变量和类型
- 2.1 更多的输出
- 2.2 值
- 2.3 变量
- 2.4 赋值
- 2.5 输出变量
- 2.6 关键字
- 2.7 操作符
- 2.8 操作顺序
- 2.9 操作符
- 2.10 组合
- 2.11 术语表
- 第3章 函数
- 3.1 浮点数
- 3.2 double到int的转换
- 3.3 数学函数
- 3.4 函数组合
- 3.5 添加新函数
- 3.6 定义与使用
- 3.7 多函数编程
- 3.8 参数与参数值
- 3.9 参数和变量的局部性
- 3.10 多参函数
- 3.11 有返回值的函数
- 3.12 术语表
- 第4章 条件和递归
- 4.1 取模操作符
- 4.2 条件执行
- 4.3 选择执行
- 4.4 链式条件
- 4.5 嵌套条件
- 4.6 return语句
- 4.7 递归
- 4.8 无穷递归
- 4.9 递归函数的栈图
- 4.10 术语表
- 第5章 有返回值的函数
- 5.1 返回值
- 5.2 程序开发
- 5.3 组合
- 5.4 重载
- 5.5 布尔值
- 5.6 布尔变量
- 5.7 逻辑操作符
- 5.8 布尔函数
- 5.9 从main函数返回
- 5.10 深入递归
- 5.11 思路跳跃
- 5.12 又一个例子
- 5.13 术语表
- 第6章 迭代
- 6.1 多次赋值
- 6.2 迭代
- 6.3 while语句
- 6.4 制表
- 6.5 二维表
- 6.6 封装和泛化
- 6.7 函数
- 6.8 再说封装
- 6.9 局部变量
- 6.10 再说泛化
- 6.11 术语表
- 第7章 字符串那些事儿
- 7.1 字符串的容器
- 7.2 apstring变量
- 7.3 从字符串中提取字符
- 7.4 字符串长度
- 7.5 遍历
- 7.6 一个运行时错误
- 7.7 find函数
- 7.8 我们自己的find版本
- 7.9 循环与计数
- 7.10 增量与减量操作符
- 7.11 字符串连接
- 7.12 apstring是可变的
- 7.13 apstring是可比较的
- 7.14 字符分类
- 7.15 其他apstring函数
- 7.16 术语表
- 第8章 结构体
- 8.1 复合值
- 8.2 Point对象
- 8.3 访问实例变量
- 8.4 对结构体的操作
- 8.5 作为参数的结构
- 8.6 传值调用
- 8.7 传引用调用
- 8.8 矩形
- 8.9 作为返回值的结构
- 8.10 按引用传递其他类型
- 8.11 获取用户输入
- 8.12 术语表
- 第9章 再谈结构体
- 9.1 Time结构体
- 9.2 printTime函数
- 9.3 对象函数
- 9.4 纯函数
- 9.5 const参数
- 9.6 修改函数
- 9.7 填充函数
- 9.8 哪个最佳?
- 9.9 增量开发vs高屋建瓴
- 9.10 泛化
- 9.11 算法
- 9.12 术语表
- 第10章 向量
- 10.1 元素访问
- 10.2 向量的复制
- 10.3 for循环
- 10.4 向量的长度
- 10.5 随机数
- 10.6 统计
- 10.7 随机数的向量
- 10.8 计数
- 10.9 检查其他值
- 10.10直方图
- 10.11一次遍历的方案
- 10.12随机种子
- 10.13术语表
- 第11章 成员函数
- 11.1 对象和函数
- 11.2 print
- 11.3 隐式变量访问
- 11.4 另一个例子
- 11.5 再一个例子
- 11.6 更复杂的例子
- 11.8 初始化还是构造?
- 11.7 构造函数
- 11.9 最后一个例子
- 11.10 头文件
- 11.11 术语表
- 第12章 对象的向量
- 12.1 组合
- 12.2 纸牌对象(Card)
- 12.3 printCard函数
- 12.4 equals函数
- 12.5 isGreater函数
- 12.6 纸牌的向量
- 12.7 printDeck函数
- 12.8 查找
- 12.9 二分查找
- 12.10 牌堆与子牌堆
- 12.11 术语表
- 第13章 基于向量的对象
- 13.1 枚举类型
- 13.2 switch语句
- 13.3 牌堆
- 13.4 另一个构造函数
- 13.5 Deck成员函数
- 13.6 洗牌
- 13.7 排序
- 13.8 子牌堆
- 13.9 洗牌与发牌
- 13.10 归并排序
- 13.11 术语表
- 第14章 类与不变式
- 14.1 私有数据和私有类
- 14.2 什么是类?
- 14.3 复数
- 14.4 访问函数(Accessor functions)
- 14.5 输出
- 14.6 复数相关函数(一)
- 14.7 复数相关函数(二)
- 14.8 不变式
- 14.9 先决条件
- 14.10 私有函数
- 14.11 术语表
- 第15章 文件输入/输出与apmatrix类
- 15.1 流
- 15.2 文件输入
- 15.3 文件输出
- 15.4 解析输入
- 15.5 解析数字
- 15.6 集合数据结构Set
- 15.7 apmatrix类
- 15.8 距离矩阵
- 15.9 一个更合理的距离矩阵
- 15.10 术语表