### CMS将可达性分析分解成两个阶段
a.仅扫描与根节点直接关联的对象;
b.继续向下扫描完所有对象。因此,标记阶段也被拆分成两个阶段,即初始标记和并发标记。
#### CMS完整的收集过程如下:
1. 初始标记(init-mark):仅扫描与根节点直接关联的对象并标记,这个阶段必须STW, 由于跟节点数量有限,所以这个过程非常短暂。
2. 并发标记(concurrent-marking):与用户线程并发标记。这个阶段在初始标记的基础上继续向下追溯标记。在并发标记阶段,用户线程和标记线程并发执行,所以用户不会感受到停顿。
3. 并发预清理(concurrent-precleaning):与用户线程并发进行。在并发标记阶段一些对象的引用已经发生了变化,precleaning会发现这些引用关系的改变,并将存活的对象标记。举个例子:如果线程A有一个指向对象X的引用,并将该引用传递给了线程B,CMS需要记录下线程B持有了对象X,即使线程A已经不存在了。precleaning是为了减少下一阶段“重新标记”的工作量,因为remark阶段会STW。
4. 重新标记(remark): remark阶段会STW。如果应用正在并发运行且在不断地改变对象引用,CMS则不能准确地确定某个对象是否存活。所以CMS会在remark阶段STW,从而获取所有引用关系的改变。
5. 并发清理(concurrent-sweeping):清理垃圾对象,这个阶段GC线程和用户线程并发执行。
6. 并发重置(concurrent-reset):重置CMS收集器的数据结构,做好下一次执行GC任务的准备工作。
![](https://img.kancloud.cn/b9/b4/b9b40bfc57d6253c4d9a3c3d7cc1c79e_1090x323.png)
由上述CMS执行过程可以得出:
* **CMS两次STW的时间都是比较短暂的,两个最耗时的时间是并发标记和并发清理,但是这两个阶段都是可以和用户线程并发执行的**。
* 由于在并发标记和并发清理阶段用户线程并没有中断,所在CMS回收过程中,还应该保证用户线程有足够的内存可用,**CMS并不能让其他老年代垃圾回收器那样等到内存几乎被填满之后再进行垃圾回收**。而是当堆内存使用率达到一定的阈值的时候就开始进行回收,以确保应用程序在CMS执行垃圾回收期间依然有足够的内存空间支持运行。
* 如果**CMS垃圾回收执行失败(CMS运行期间预留的内存无法满足程序需要,会出现Concurrent Mode Failure),这是JVM将要启动后备方案,临时启动Serial Old收集器重新进行老年代垃圾回收**。
- 前言
- Write once, run anywhere
- 概述
- JAVA虚拟机
- JVM整体结构
- JVM架构模型
- JVM虚拟机分类
- HotSpot VM
- JRockit
- IBM-J9
- Azul/zing VM
- Taobao VM
- Dalvik VM
- Graal VM
- JAVA源码编译机制
- Javac编译器
- 分析和输入到符号表
- 注解处理
- 语义分析和生成class文件
- ECJ编译器
- 类执行机制
- 字节码解释执行
- 栈顶缓存
- 部分栈帧共享
- 编译执行
- 即时编译器
- C1 Compiler
- C2 Compiler
- Graal编译器
- C1与C2编译器
- AOT
- 编译优化
- 字符串优化
- 方法内联
- 逃逸分析
- 同步消除
- 标量替换
- 栈上分配
- 去虚拟化/逆优化
- 多层编译
- JVM编译策略
- OSR编译
- 冗余削除
- CodeCache
- 常量编译优化
- JVM运行时数据区
- 程序计数器
- JAVA虚拟机栈
- 栈帧
- 局部变量表
- 操作数栈
- 本地方法栈
- Java调用native方法
- JVM Stacks && Native Stacks
- 堆-Heap
- 方法区(Method Area)
- 运行时常量池
- 常量传播优化
- MetaSpace
- 直接内存
- StackOverflowError
- 递归方法
- OutOfMemoryError
- 本地内存溢出
- 执行引擎
- 运行时数据区关联关系
- jdk8内存结构
- JMM内存模型
- JAVA内存模型
- JMM八种操作指令
- 内存屏障
- 指令重排
- as-if-serial语义
- Happen-Before规则
- 数据依赖性
- 原子性、可见性与有序性
- 伪共享
- CPU三级缓存
- 缓存行
- MESI协议
- Java中的伪共享
- ConcurrentHashMap伪共享解决方案
- 虚拟机对象
- 对象创建原理
- 对象内存布局
- 对象头
- 实例数据
- 对象的访问定位
- 垃圾收集器与内存分配策略
- GC相关概念
- TLAB
- JVM GC工作原理
- 内存管理
- JAVA引用分类
- 死亡标记
- 回收方法区
- 三色标记算法
- 垃圾收集算法
- 标记-清除算法
- 标记-整理算法
- 复制算法
- 分代收集算法
- HotSpot算法实现
- STW
- 垃圾收集器
- 常见的垃圾收集器
- 垃圾收集器分类
- Serial收集器
- Serial Old收集器
- ParNew收集器
- Parallel Scavenge收集器
- Parallel Old收集器
- CMS收集器
- CMS完整收集过程
- Card Table
- G1收集器
- 分代收集
- 空间整合
- 可预测的停顿时间模型
- G1&CMS
- 主要参数说明
- G1适用场景
- Remembered Set
- G1垃圾回收的过程
- G1优化建议
- Shenandoah
- ZGC
- 垃圾收集器特点
- GC日志
- GC策略的评价指标
- jvm card table数据结构
- 对象生存轨迹
- 类文件结构
- 魔数
- 版本号
- 常量池
- 访问标志
- 父类索引
- 接口集合
- 字段集合
- 方法集合
- 属性集合
- 类加载机制与类的初始化
- Java代码执行流程
- 类加载过程
- 抽象类ClassLoader
- 常见类加载器
- BootstrapClassLoader
- 自定义类加载器
- 线程上下文类加载器
- 双亲委派模型
- Tomcat类加载机制
- ServiceLoader
- 类的初始化
- 常见的JVM类加载异常
- ClassNotFoundException
- NoClassDefFoundError
- LinkageError
- ClassCastException
- 虚拟机性能调优监控与故障处理工具
- CPU利用率高/飙升
- 排查及解决方案
- 上下文切换
- GC问题定位解决方案
- prommotion failed
- FullGC频繁
- youngGC
- 内存问题
- 内存溢出和内存泄漏
- 内存溢出
- 栈溢出
- 堆溢出
- 对外内存溢出
- 内存泄漏
- 磁盘问题
- 线上问题解决方案
- 不定期出现的接口耗时现象
- 线程池异常
- 死锁问题
- JVM调优
- jvm参考配置
- jvm-jstat
- jvm-jmap
- jvm-jstack
- jinfo
- jps
- 虚拟机的退出
- Shutdown Hook
- JVM指令
- 附录
- 常用JVM指令
- Class文件版本号
- Class文件格式
- 方法访问标识
- jvm常量池
- 类或接口的访问标识
- 描述符标识字符含义
- 字段访问标识
- Java程序与Docker容器环境
- 基准测试