### 双亲委派模型
**双亲委派模型\(Parents Delegation Model\):**
* 定义:当一个类加载器接收到一个类的加载任务时,它并不会立即展开加载,而是将加载器任务委派给它的超类加载器去执行,每一层的类加载器都采用相同的方式,直至委派给最顶层的启动类加载器为止;如果超类加载器无法加载委派给它的类时,将加载任务退回给它的下一级类加载器去执行加载;
* 按照双亲委派模型的规则,除了启动类加载器之外,所有的类加载器都拥有一个超类加载器
![](https://img.kancloud.cn/10/1b/101bb523bf9eb67bba273f601a1c3f8c_1366x746.png)
#### 优点
* 能够有效确保一个类的全局唯一性\(同一个类只会被加载一次\)
#### java.lang.ClassNotFoundException
显示调用下面两种方式可能会导致类加载异常:
* Class.forName\(\)
* ClassLoader.getSystemClassLoader\(\).loadClass\(\)
#### 知识点
* JAVA虚拟机规范并没有要求类加载器的加载机制一定要使用双亲委派模型,只是建议采用这种方式
* 比如Tomcat就是自行实现了类加载机制\(当默认的类加载器接收到一个类的加载任务时先自行加载,当加载失败时才会委派给它的超类加载器执行加载,这同时也是Servlet规范推荐的一种做法\)
* 程序中如果没有显示指定类加载器,AppClassLoader就是任务委派的发起者
#### 彩图![](https://img.kancloud.cn/e0/b9/e0b977c5a3cb556df6a148c3bf29f6ee_1001x758.jpg)
### 为什么要使用双亲委托这种模型呢?
因为这样可以避免重复加载,当父亲已经加载了该类的时候,就没有必要子ClassLoader再加载一次。考虑到安全因素,我们试想一下,如果不使用这种委托模式,那我们就可以随时使用自定义的String来动态替代java核心api中定义的类型,这样会存在非常大的安全隐患,而双亲委托的方式,就可以避免这种情况,因为String已经在启动时就被引导类加载器(Bootstrcp ClassLoader)加载,所以用户自定义的ClassLoader永远也无法加载一个自己写的String,除非你改变JDK中ClassLoader搜索类的默认算法。
### 但是JVM在搜索类的时候,又是如何判定两个class是相同的呢?
JVM在判定两个class是否相同时,不仅要判断两个类名是否相同,而且要判断是否由同一个类加载器实例加载的。只有两者同时满足的情况下,JVM才认为这两个class是相同的。就算两个class是同一份class字节码,如果被两个不同的ClassLoader实例所加载,JVM也会认为它们是两个不同class
#### 既然JVM已经提供了默认的类加载器,为什么还要定义自已的类加载器呢?
因为Java中提供的默认ClassLoader,只加载指定目录下的jar和class,如果我们想加载其它位置的类或jar时,比如:我要加载网络上的一个class文件,通过动态加载到内存之后,要调用这个类中的方法实现我的业务逻辑。在这样的情况下,默认的ClassLoader就不能满足我们的需求了,所以需要定义自己的ClassLoader
- 前言
- Write once, run anywhere
- 概述
- JAVA虚拟机
- JVM整体结构
- JVM架构模型
- JVM虚拟机分类
- HotSpot VM
- JRockit
- IBM-J9
- Azul/zing VM
- Taobao VM
- Dalvik VM
- Graal VM
- JAVA源码编译机制
- Javac编译器
- 分析和输入到符号表
- 注解处理
- 语义分析和生成class文件
- ECJ编译器
- 类执行机制
- 字节码解释执行
- 栈顶缓存
- 部分栈帧共享
- 编译执行
- 即时编译器
- C1 Compiler
- C2 Compiler
- Graal编译器
- C1与C2编译器
- AOT
- 编译优化
- 字符串优化
- 方法内联
- 逃逸分析
- 同步消除
- 标量替换
- 栈上分配
- 去虚拟化/逆优化
- 多层编译
- JVM编译策略
- OSR编译
- 冗余削除
- CodeCache
- 常量编译优化
- JVM运行时数据区
- 程序计数器
- JAVA虚拟机栈
- 栈帧
- 局部变量表
- 操作数栈
- 本地方法栈
- Java调用native方法
- JVM Stacks && Native Stacks
- 堆-Heap
- 方法区(Method Area)
- 运行时常量池
- 常量传播优化
- MetaSpace
- 直接内存
- StackOverflowError
- 递归方法
- OutOfMemoryError
- 本地内存溢出
- 执行引擎
- 运行时数据区关联关系
- jdk8内存结构
- JMM内存模型
- JAVA内存模型
- JMM八种操作指令
- 内存屏障
- 指令重排
- as-if-serial语义
- Happen-Before规则
- 数据依赖性
- 原子性、可见性与有序性
- 伪共享
- CPU三级缓存
- 缓存行
- MESI协议
- Java中的伪共享
- ConcurrentHashMap伪共享解决方案
- 虚拟机对象
- 对象创建原理
- 对象内存布局
- 对象头
- 实例数据
- 对象的访问定位
- 垃圾收集器与内存分配策略
- GC相关概念
- TLAB
- JVM GC工作原理
- 内存管理
- JAVA引用分类
- 死亡标记
- 回收方法区
- 三色标记算法
- 垃圾收集算法
- 标记-清除算法
- 标记-整理算法
- 复制算法
- 分代收集算法
- HotSpot算法实现
- STW
- 垃圾收集器
- 常见的垃圾收集器
- 垃圾收集器分类
- Serial收集器
- Serial Old收集器
- ParNew收集器
- Parallel Scavenge收集器
- Parallel Old收集器
- CMS收集器
- CMS完整收集过程
- Card Table
- G1收集器
- 分代收集
- 空间整合
- 可预测的停顿时间模型
- G1&CMS
- 主要参数说明
- G1适用场景
- Remembered Set
- G1垃圾回收的过程
- G1优化建议
- Shenandoah
- ZGC
- 垃圾收集器特点
- GC日志
- GC策略的评价指标
- jvm card table数据结构
- 对象生存轨迹
- 类文件结构
- 魔数
- 版本号
- 常量池
- 访问标志
- 父类索引
- 接口集合
- 字段集合
- 方法集合
- 属性集合
- 类加载机制与类的初始化
- Java代码执行流程
- 类加载过程
- 抽象类ClassLoader
- 常见类加载器
- BootstrapClassLoader
- 自定义类加载器
- 线程上下文类加载器
- 双亲委派模型
- Tomcat类加载机制
- ServiceLoader
- 类的初始化
- 常见的JVM类加载异常
- ClassNotFoundException
- NoClassDefFoundError
- LinkageError
- ClassCastException
- 虚拟机性能调优监控与故障处理工具
- CPU利用率高/飙升
- 排查及解决方案
- 上下文切换
- GC问题定位解决方案
- prommotion failed
- FullGC频繁
- youngGC
- 内存问题
- 内存溢出和内存泄漏
- 内存溢出
- 栈溢出
- 堆溢出
- 对外内存溢出
- 内存泄漏
- 磁盘问题
- 线上问题解决方案
- 不定期出现的接口耗时现象
- 线程池异常
- 死锁问题
- JVM调优
- jvm参考配置
- jvm-jstat
- jvm-jmap
- jvm-jstack
- jinfo
- jps
- 虚拟机的退出
- Shutdown Hook
- JVM指令
- 附录
- 常用JVM指令
- Class文件版本号
- Class文件格式
- 方法访问标识
- jvm常量池
- 类或接口的访问标识
- 描述符标识字符含义
- 字段访问标识
- Java程序与Docker容器环境
- 基准测试