多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
# 1.8. 交叉分解 校验者: [@peels](https://github.com/apachecn/scikit-learn-doc-zh) 翻译者: [@Counting stars](https://github.com/apachecn/scikit-learn-doc-zh) 交叉分解模块主要包含两个算法族: 偏最小二乘法(PLS)和典型相关分析(CCA)。 这些算法族具有发现两个多元数据集之间的线性关系的用途: `fit` method (拟合方法)的参数 `X` 和 `Y` 都是 2 维数组。 [![http://sklearn.apachecn.org/cn/0.19.0/_images/sphx_glr_plot_compare_cross_decomposition_0011.png](https://box.kancloud.cn/e9e61b22ad1d1048fedd9c646a548e22_566x377.jpg)](../auto_examples/cross_decomposition/plot_compare_cross_decomposition.html) 交叉分解算法能够找到两个矩阵 (X 和 Y) 的基础关系。它们是对在两个空间的 协方差结构进行建模的隐变量方法。它们将尝试在X空间中找到多维方向,该方向能 够解释Y空间中最大多维方差方向。PLS回归特别适用于当预测变量矩阵具有比观测值 更多的变量以及当X值存在多重共线性时。相比之下,在这些情况下,标准回归将失败。 包含在此模块中的类有:[`PLSRegression`](generated/sklearn.cross_decomposition.PLSRegression.html#sklearn.cross_decomposition.PLSRegression "sklearn.cross_decomposition.PLSRegression"), [`PLSCanonical`](generated/sklearn.cross_decomposition.PLSCanonical.html#sklearn.cross_decomposition.PLSCanonical "sklearn.cross_decomposition.PLSCanonical"), [`CCA`](generated/sklearn.cross_decomposition.CCA.html#sklearn.cross_decomposition.CCA "sklearn.cross_decomposition.CCA"), [`PLSSVD`](generated/sklearn.cross_decomposition.PLSSVD.html#sklearn.cross_decomposition.PLSSVD "sklearn.cross_decomposition.PLSSVD") 示例: - [Compare cross decomposition methods](../auto_examples/cross_decomposition/plot_compare_cross_decomposition.html#sphx-glr-auto-examples-cross-decomposition-plot-compare-cross-decomposition-py)