🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
# 2. 无监督学习 - [2.1. 高斯混合模型](modules/mixture.html) - [2.1.1. 高斯混合](modules/mixture.html#id2) - [2.1.1.1. 优缺点 `GaussianMixture`](modules/mixture.html#gaussianmixture) - [2.1.1.1.1. 优点](modules/mixture.html#id3) - [2.1.1.1.2. 缺点](modules/mixture.html#id4) - [2.1.1.2. 选择经典高斯混合模型中分量的个数](modules/mixture.html#id5) - [2.1.1.3. 估计算法期望最大化(EM)](modules/mixture.html#em) - [2.1.2. 变分贝叶斯高斯混合](modules/mixture.html#bgmm) - [2.1.2.1. 估计算法: 变分推断(variational inference)](modules/mixture.html#variational-inference) - [2.1.2.1.1. 优点](modules/mixture.html#id8) - [2.1.2.1.2. 缺点](modules/mixture.html#id9) - [2.1.2.2. The Dirichlet Process(狄利克雷过程)](modules/mixture.html#the-dirichlet-process) - [2.2. 流形学习](modules/manifold.html) - [2.2.1. 介绍](modules/manifold.html#id2) - [2.2.2. Isomap](modules/manifold.html#isomap) - [2.2.2.1. 复杂度](modules/manifold.html#id4) - [2.2.3. 局部线性嵌入](modules/manifold.html#locally-linear-embedding) - [2.2.3.1. 复杂度](modules/manifold.html#id6) - [2.2.4. 改进型局部线性嵌入(MLLE)](modules/manifold.html#mlle) - [2.2.4.1. 复杂度](modules/manifold.html#id7) - [2.2.5. 黑塞特征映射(HE)](modules/manifold.html#he) - [2.2.5.1. 复杂度](modules/manifold.html#id8) - [2.2.6. 谱嵌入](modules/manifold.html#spectral-embedding) - [2.2.6.1. 复杂度](modules/manifold.html#id10) - [2.2.7. 局部切空间对齐(LTSA)](modules/manifold.html#ltsa) - [2.2.7.1. 复杂度](modules/manifold.html#id11) - [2.2.8. 多维尺度分析(MDS)](modules/manifold.html#mds) - [2.2.8.1. 度量 MDS](modules/manifold.html#id13) - [2.2.8.2. 非度量 MDS](modules/manifold.html#id14) - [2.2.9. t 分布随机邻域嵌入(t-SNE)](modules/manifold.html#t-t-sne) - [2.2.9.1. 优化 t-SNE](modules/manifold.html#id15) - [2.2.9.2. Barnes-Hut t-SNE](modules/manifold.html#barnes-hut-t-sne) - [2.2.10. 实用技巧](modules/manifold.html#id17) - [2.3. 聚类](modules/clustering.html) - [2.3.1. 聚类方法概述](modules/clustering.html#id2) - [2.3.2. K-means](modules/clustering.html#k-means) - [2.3.2.1. 小批量 K-Means](modules/clustering.html#mini-batch-kmeans) - [2.3.3. Affinity Propagation](modules/clustering.html#affinity-propagation) - [2.3.4. Mean Shift](modules/clustering.html#mean-shift) - [2.3.5. Spectral clustering](modules/clustering.html#spectral-clustering) - [2.3.5.1. 不同的标记分配策略](modules/clustering.html#id10) - [2.3.6. 层次聚类](modules/clustering.html#hierarchical-clustering) - [2.3.6.1. Different linkage type: Ward, complete and average linkage](modules/clustering.html#different-linkage-type-ward-complete-and-average-linkage) - [2.3.6.2. 添加连接约束](modules/clustering.html#id12) - [2.3.6.3. Varying the metric](modules/clustering.html#varying-the-metric) - [2.3.7. DBSCAN](modules/clustering.html#dbscan) - [2.3.8. Birch](modules/clustering.html#birch) - [2.3.9. 聚类性能度量](modules/clustering.html#clustering-evaluation) - [2.3.9.1. 调整后的 Rand 指数](modules/clustering.html#rand) - [2.3.9.1.1. 优点](modules/clustering.html#id24) - [2.3.9.1.2. 缺点](modules/clustering.html#id25) - [2.3.9.1.3. 数学表达](modules/clustering.html#id26) - [2.3.9.2. 基于 Mutual Information (互信息)的分数](modules/clustering.html#mutual-information) - [2.3.9.2.1. 优点](modules/clustering.html#id27) - [2.3.9.2.2. 缺点](modules/clustering.html#id28) - [2.3.9.2.3. 数学公式](modules/clustering.html#id29) - [2.3.9.3. 同质性,完整性和 V-measure](modules/clustering.html#v-measure) - [2.3.9.3.1. 优点](modules/clustering.html#id32) - [2.3.9.3.2. 缺点](modules/clustering.html#id33) - [2.3.9.3.3. 数学表达](modules/clustering.html#id34) - [2.3.9.4. Fowlkes-Mallows 分数](modules/clustering.html#fowlkes-mallows) - [2.3.9.4.1. 优点](modules/clustering.html#id35) - [2.3.9.4.2. 缺点](modules/clustering.html#id36) - [2.3.9.5. Silhouette 系数](modules/clustering.html#silhouette) - [2.3.9.5.1. 优点](modules/clustering.html#id37) - [2.3.9.5.2. 缺点](modules/clustering.html#id38) - [2.3.9.6. Calinski-Harabaz 指数](modules/clustering.html#calinski-harabaz) - [2.3.9.6.1. 优点](modules/clustering.html#id39) - [2.3.9.6.2. 缺点](modules/clustering.html#id40) - [2.4. 双聚类](modules/biclustering.html) - [2.4.1. Spectral Co-Clustering](modules/biclustering.html#spectral-co-clustering) - [2.4.1.1. 数学公式](modules/biclustering.html#id2) - [2.4.2. Spectral Biclustering](modules/biclustering.html#spectral-biclustering) - [2.4.2.1. 数学表示](modules/biclustering.html#id4) - [2.4.3. Biclustering 评测](modules/biclustering.html#biclustering-evaluation) - [2.5. 分解成分中的信号(矩阵分解问题)](modules/decomposition.html) - [2.5.1. 主成分分析(PCA)](modules/decomposition.html#pca) - [2.5.1.1. 准确的PCA和概率解释(Exact PCA and probabilistic interpretation)](modules/decomposition.html#pca-exact-pca-and-probabilistic-interpretation) - [2.5.1.2. 增量PCA (Incremental PCA)](modules/decomposition.html#pca-incremental-pca) - [2.5.1.3. PCA 使用随机SVD](modules/decomposition.html#pca-svd) - [2.5.1.4. 核 PCA](modules/decomposition.html#kernel-pca) - [2.5.1.5. 稀疏主成分分析 ( SparsePCA 和 MiniBatchSparsePCA )](modules/decomposition.html#sparsepca-minibatchsparsepca) - [2.5.2. 截断奇异值分解和隐语义分析](modules/decomposition.html#lsa) - [2.5.3. 词典学习](modules/decomposition.html#dictionarylearning) - [2.5.3.1. 带有预计算词典的稀疏编码](modules/decomposition.html#sparsecoder) - [2.5.3.2. 通用词典学习](modules/decomposition.html#id9) - [2.5.3.3. 小批量字典学习](modules/decomposition.html#minibatchdictionarylearning) - [2.5.4. 因子分析](modules/decomposition.html#fa) - [2.5.5. 独立成分分析(ICA)](modules/decomposition.html#ica) - [2.5.6. 非负矩阵分解(NMF 或 NNMF)](modules/decomposition.html#nmf-nnmf) - [2.5.6.1. NMF 与 Frobenius 范数](modules/decomposition.html#nmf-frobenius) - [2.5.6.2. 具有 beta-divergence 的 NMF](modules/decomposition.html#beta-divergence-nmf) - [2.5.7. 隐 Dirichlet 分配(LDA)](modules/decomposition.html#dirichlet-lda) - [2.6. 协方差估计](modules/covariance.html) - [2.7. 经验协方差](modules/covariance.html#id2) - [2.8. 收敛协方差](modules/covariance.html#shrunk-covariance) - [2.8.1. 基本收敛](modules/covariance.html#id4) - [2.8.2. Ledoit-Wolf 收敛](modules/covariance.html#ledoit-wolf) - [2.8.3. Oracle 近似收缩](modules/covariance.html#oracle) - [2.9. 稀疏逆协方差](modules/covariance.html#sparse-inverse-covariance) - [2.10. Robust 协方差估计](modules/covariance.html#robust) - [2.10.1. 最小协方差决定](modules/covariance.html#id11) - [2.11. 新奇和异常值检测](modules/outlier_detection.html) - [2.11.1. Novelty Detection(新奇检测)](modules/outlier_detection.html#novelty-detection) - [2.11.2. Outlier Detection(异常值检测)](modules/outlier_detection.html#id2) - [2.11.2.1. Fitting an elliptic envelope(椭圆模型拟合)](modules/outlier_detection.html#fitting-an-elliptic-envelope) - [2.11.2.2. Isolation Forest(隔离森林)](modules/outlier_detection.html#isolation-forest) - [2.11.2.3. Local Outlier Factor(局部异常系数)](modules/outlier_detection.html#local-outlier-factor) - [2.11.2.4. 一类支持向量机与椭圆模型与隔离森林与局部异常系数](modules/outlier_detection.html#id4) - [2.12. 密度估计](modules/density.html) - [2.12.1. 密度估计: 直方图](modules/density.html#id2) - [2.12.2. 核密度估计](modules/density.html#kernel-density) - [2.13. 神经网络模型(无监督)](modules/neural_networks_unsupervised.html) - [2.13.1. 限制波尔兹曼机](modules/neural_networks_unsupervised.html#rbm) - [2.13.1.1. 图形模型和参数化](modules/neural_networks_unsupervised.html#id3) - [2.13.1.2. 伯努利限制玻尔兹曼机](modules/neural_networks_unsupervised.html#id4) - [2.13.1.3. 随机最大似然学习](modules/neural_networks_unsupervised.html#sml)