# 外部资源,视频和谈话
校验者:
翻译者:
[@巴黎灬メの雨季](https://github.com/apachecn/scikit-learn-doc-zh)
校验者:
翻译者:
[@巴黎灬メの雨季](https://github.com/apachecn/scikit-learn-doc-zh)
For written tutorials, see the [Tutorial section](tutorial/index.html#tutorial-menu) of the documentation.
## Scientific Python 的新手?
For those that are still new to the scientific Python ecosystem, we highly recommend the [Python Scientific Lecture Notes](http://www.scipy-lectures.org/). This will help you find your footing a bit and will definitely improve your scikit-learn experience. A basic understanding of NumPy arrays is recommended to make the most of scikit-learn.
## 外部教程
There are several online tutorials available which are geared toward specific subject areas:
- [Machine Learning for NeuroImaging in Python](http://nilearn.github.io/)
- [Machine Learning for Astronomical Data Analysis](https://github.com/astroML/sklearn_tutorial)
## 视频
- An introduction to scikit-learn [Part I](https://conference.scipy.org/scipy2013/tutorial_detail.php?id=107) and [Part II](https://conference.scipy.org/scipy2013/tutorial_detail.php?id=111) at Scipy 2013 by [Gael Varoquaux](http://gael-varoquaux.info), [Jake Vanderplas](http://staff.washington.edu/jakevdp) and [Olivier Grisel](https://twitter.com/ogrisel). Notebooks on [github](https://github.com/jakevdp/sklearn_scipy2013).
- [Introduction to scikit-learn](http://videolectures.net/icml2010_varaquaux_scik/) by [Gael Varoquaux](http://gael-varoquaux.info) at ICML 2010
> A three minute video from a very early stage of the scikit, explaining the basic idea and approach we are following.
- [Introduction to statistical learning with scikit-learn](http://archive.org/search.php?query=scikit-learn)by [Gael Varoquaux](http://gael-varoquaux.info) at SciPy 2011
> An extensive tutorial, consisting of four sessions of one hour. The tutorial covers the basics of machine learning, many algorithms and how to apply them using scikit-learn. The material corresponding is now in the scikit-learn documentation section [关于科学数据处理的统计学习教程](tutorial/statistical_inference/index.html#stat-learn-tut-index).
- [Statistical Learning for Text Classification with scikit-learn and NLTK](http://www.pyvideo.org/video/417/pycon-2011--statistical-machine-learning-for-text)(and [slides](http://www.slideshare.net/ogrisel/statistical-machine-learning-for-text-classification-with-scikitlearn-and-nltk)) by [Olivier Grisel](https://twitter.com/ogrisel) at PyCon 2011
> Thirty minute introduction to text classification. Explains how to use NLTK and scikit-learn to solve real-world text classification tasks and compares against cloud-based solutions.
- [Introduction to Interactive Predictive Analytics in Python with scikit-learn](https://www.youtube.com/watch?v=Zd5dfooZWG4)by [Olivier Grisel](https://twitter.com/ogrisel) at PyCon 2012
> 3-hours long introduction to prediction tasks using scikit-learn.
- [scikit-learn - Machine Learning in Python](https://newcircle.com/s/post/1152/scikit-learn_machine_learning_in_python)by [Jake Vanderplas](http://staff.washington.edu/jakevdp) at the 2012 PyData workshop at Google
> Interactive demonstration of some scikit-learn features. 75 minutes.
- [scikit-learn tutorial](https://vimeo.com/53062607) by [Jake Vanderplas](http://staff.washington.edu/jakevdp) at PyData NYC 2012
> Presentation using the online tutorial, 45 minutes.
- scikit-learn 0.19 中文文档
- 用户指南
- 1. 监督学习
- 1.1. 广义线性模型
- 1.2. 线性和二次判别分析
- 1.3. 内核岭回归
- 1.4. 支持向量机
- 1.5. 随机梯度下降
- 1.6. 最近邻
- 1.7. 高斯过程
- 1.8. 交叉分解
- 1.9. 朴素贝叶斯
- 1.10. 决策树
- 1.11. 集成方法
- 1.12. 多类和多标签算法
- 1.13. 特征选择
- 1.14. 半监督学习
- 1.15. 等式回归
- 1.16. 概率校准
- 1.17. 神经网络模型(有监督)
- 2. 无监督学习
- 2.1. 高斯混合模型
- 2.2. 流形学习
- 2.3. 聚类
- 2.4. 双聚类
- 2.5. 分解成分中的信号(矩阵分解问题)
- 2.6. 协方差估计
- 2.7. 经验协方差
- 2.8. 收敛协方差
- 2.9. 稀疏逆协方差
- 2.10. Robust 协方差估计
- 2.11. 新奇和异常值检测
- 2.12. 密度估计
- 2.13. 神经网络模型(无监督)
- 3. 模型选择和评估
- 3.1. 交叉验证:评估估算器的表现
- 3.2. 调整估计器的超参数
- 3.3. 模型评估: 量化预测的质量
- 3.4. 模型持久化
- 3.5. 验证曲线: 绘制分数以评估模型
- 4. 数据集转换
- 4.1. Pipeline(管道)和 FeatureUnion(特征联合): 合并的评估器
- 4.2. 特征提取
- 4.3. 预处理数据
- 4.4. 无监督降维
- 4.5. 随机投影
- 4.6. 内核近似
- 4.7. 成对的矩阵, 类别和核函数
- 4.8. 预测目标 (y) 的转换
- 5. 数据集加载工具
- 6. 大规模计算的策略: 更大量的数据
- 7. 计算性能
- 教程
- 使用 scikit-learn 介绍机器学习
- 关于科学数据处理的统计学习教程
- 机器学习: scikit-learn 中的设置以及预估对象
- 监督学习:从高维观察预测输出变量
- 模型选择:选择估计量及其参数
- 无监督学习: 寻求数据表示
- 把它们放在一起
- 寻求帮助
- 处理文本数据
- 选择正确的评估器(estimator)
- 外部资源,视频和谈话