# 4.1. Pipeline(管道)和 FeatureUnion(特征联合): 合并的评估器
校验者:
[@程威](https://github.com/apachecn/scikit-learn-doc-zh)
翻译者:
[@Sehriff](https://github.com/apachecn/scikit-learn-doc-zh)
## 4.1.1. Pipeline: 链式评估器
[`Pipeline`](generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline "sklearn.pipeline.Pipeline") 可以把多个评估器链接成一个。这个是很有用的,因为处理数据的步骤一般都是固定的,例如特征选择、标准化和分类。[`Pipeline`](generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline "sklearn.pipeline.Pipeline") 主要有两个目的:便捷性和封装性你只要对数据调用 [``](#id2)fit``和 [``](#id4)predict``一次来适配所有的一系列评估器。联合的参数选择你可以一次 :ref:[`](#id6)grid search <grid\_search>`管道中所有评估器的参数。安全性训练转换器和预测器使用的是相同样本,管道有助于防止来自测试数据的统计数据泄露到交叉验证的训练模型中。管道中的所有评估器,除了最后一个评估器,管道的所有评估器必须是转换器。 (例如,必须有 `transform` 方法). 最后一个评估器的类型不限(转换器、分类器等等)
### 4.1.1.1. 用法
> [`Pipeline`](generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline "sklearn.pipeline.Pipeline") 使用一系列 `(key, value)` 键值对来构建,其中 `key` 是你给这个步骤起的名字, `value` 是一个评估器对象:
>
>
> ```
> >>> from sklearn.pipeline import Pipeline
> >>> from sklearn.svm import SVC
> >>> from sklearn.decomposition import PCA
> >>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
> >>> pipe = Pipeline(estimators)
> >>> pipe
> Pipeline(memory=None,
> steps=[('reduce_dim', PCA(copy=True,...)),
> ('clf', SVC(C=1.0,...))])
>
> ```
功能函数 [`make_pipeline`](generated/sklearn.pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline "sklearn.pipeline.make_pipeline") 是构建管道的缩写; 它接收多个评估器并返回一个管道,自动填充评估器名:
```
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.preprocessing import Binarizer
>>> make_pipeline(Binarizer(), MultinomialNB())
Pipeline(memory=None,
steps=[('binarizer', Binarizer(copy=True, threshold=0.0)),
('multinomialnb', MultinomialNB(alpha=1.0,
class_prior=None,
fit_prior=True))])
```
管道中的评估器作为一个列表保存在 `steps` 属性内:
```
>>> pipe.steps[0]
('reduce_dim', PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
svd_solver='auto', tol=0.0, whiten=False))
```
并作为 `dict` 保存在 `named_steps`:
```
>>> pipe.named_steps['reduce_dim']
PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)
```
管道中的评估器参数可以通过 `<estimator>__<parameter>` 语义来访问:
```
>>> pipe.set_params(clf__C=10)
Pipeline(memory=None,
steps=[('reduce_dim', PCA(copy=True, iterated_power='auto',...)),
('clf', SVC(C=10, cache_size=200, class_weight=None,...))])
```
named\_steps 的属性映射到多个值,在交互环境支持 tab 补全:
```
>>> pipe.named_steps.reduce_dim is pipe.named_steps['reduce_dim']
True
```
这对网格搜索尤其重要:
```
>>> from sklearn.model_selection import GridSearchCV
>>> param_grid = dict(reduce_dim__n_components=[2, 5, 10],
... clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)
```
单独的步骤可以用多个参数替换,除了最后步骤,其他步骤都可以设置为 `None` 来跳过
```
>>> from sklearn.linear_model import LogisticRegression
>>> param_grid = dict(reduce_dim=[None, PCA(5), PCA(10)],
... clf=[SVC(), LogisticRegression()],
... clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)
```
例子:
- [Pipeline Anova SVM](../auto_examples/feature_selection/plot_feature_selection_pipeline.html#sphx-glr-auto-examples-feature-selection-plot-feature-selection-pipeline-py)
- [Sample pipeline for text feature extraction and evaluation](../auto_examples/model_selection/grid_search_text_feature_extraction.html#sphx-glr-auto-examples-model-selection-grid-search-text-feature-extraction-py)
- [Pipelining: chaining a PCA and a logistic regression](../auto_examples/plot_digits_pipe.html#sphx-glr-auto-examples-plot-digits-pipe-py)
- [Explicit feature map approximation for RBF kernels](../auto_examples/plot_kernel_approximation.html#sphx-glr-auto-examples-plot-kernel-approximation-py)
- [SVM-Anova: SVM with univariate feature selection](../auto_examples/svm/plot_svm_anova.html#sphx-glr-auto-examples-svm-plot-svm-anova-py)
- [Selecting dimensionality reduction with Pipeline and GridSearchCV](../auto_examples/plot_compare_reduction.html#sphx-glr-auto-examples-plot-compare-reduction-py)
也可以参阅:
- [调整估计器的超参数](grid_search.html#grid-search)
### 4.1.1.2. 注意点
对管道调用 `fit` 方法的效果跟依次对每个评估器调用 `fit` 方法一样, 都是``transform`` 输入并传递给下个步骤。 管道中最后一个评估器的所有方法,管道都有,例如,如果最后的评估器是一个分类器, [`Pipeline`](generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline "sklearn.pipeline.Pipeline") 可以当做分类器来用。如果最后一个评估器是转换器,管道也一样可以。
### 4.1.1.3. 缓存转换器:避免重复计算
适配转换器是很耗费计算资源的。设置了``memory`` 参数, [`Pipeline`](generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline "sklearn.pipeline.Pipeline") 将会在调用``fit``方法后缓存每个转换器。 如果参数和输入数据相同,这个特征用于避免重复计算适配的转换器。典型的例子是网格搜索转换器,该转化器只要适配一次就可以多次使用。
> `memory` 参数用于缓存转换器。
`memory` 可以是包含要缓存的转换器的目录的字符串或一个 [joblib.Memory](https://pythonhosted.org/joblib/memory.html)对象:
```
>>> from tempfile import mkdtemp
>>> from shutil import rmtree
>>> from sklearn.decomposition import PCA
>>> from sklearn.svm import SVC
>>> from sklearn.pipeline import Pipeline
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
>>> cachedir = mkdtemp()
>>> pipe = Pipeline(estimators, memory=cachedir)
>>> pipe
Pipeline(...,
steps=[('reduce_dim', PCA(copy=True,...)),
('clf', SVC(C=1.0,...))])
>>> # Clear the cache directory when you don't need it anymore
>>> rmtree(cachedir)
```
Warning
**Side effect of caching transfomers**
使用 [`Pipeline`](generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline "sklearn.pipeline.Pipeline") 而不开启缓存功能,还是可以通过查看原始实例的,例如:
```
>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> pca1 = PCA()
>>> svm1 = SVC()
>>> pipe = Pipeline([('reduce_dim', pca1), ('clf', svm1)])
>>> pipe.fit(digits.data, digits.target)
...
Pipeline(memory=None,
steps=[('reduce_dim', PCA(...)), ('clf', SVC(...))])
>>> # The pca instance can be inspected directly
>>> print(pca1.components_)
[[ -1.77484909e-19 ... 4.07058917e-18]]
```
开启缓存会在适配前触发转换器的克隆。因此,管道的转换器实例不能被直接查看。 在下面例子中, 访问 `PCA` 实例 `pca2`将会引发 `AttributeError` 因为 `pca2` 是一个未适配的转换器。 这时应该使用属性 `named_steps` 来检查管道的评估器:
```
>>> cachedir = mkdtemp()
>>> pca2 = PCA()
>>> svm2 = SVC()
>>> cached_pipe = Pipeline([('reduce_dim', pca2), ('clf', svm2)],
... memory=cachedir)
>>> cached_pipe.fit(digits.data, digits.target)
...
Pipeline(memory=...,
steps=[('reduce_dim', PCA(...)), ('clf', SVC(...))])
>>> print(cached_pipe.named_steps['reduce_dim'].components_)
...
[[ -1.77484909e-19 ... 4.07058917e-18]]
>>> # Remove the cache directory
>>> rmtree(cachedir)
```
例子:
- [Selecting dimensionality reduction with Pipeline and GridSearchCV](../auto_examples/plot_compare_reduction.html#sphx-glr-auto-examples-plot-compare-reduction-py)
## 4.1.2. FeatureUnion(特征联合): 个特征层面
[`FeatureUnion`](generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion "sklearn.pipeline.FeatureUnion") 合并了多个转换器对象形成一个新的转换器,该转换器合并了他们的输出。一个 [`FeatureUnion`](generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion "sklearn.pipeline.FeatureUnion") 可以接收多个转换器对象。在适配期间,每个转换器都单独的和数据适配。 对于转换数据,转换器可以并发使用,且输出的样本向量被连接成更大的向量。
[`FeatureUnion`](generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion "sklearn.pipeline.FeatureUnion") 功能与 [`Pipeline`](generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline "sklearn.pipeline.Pipeline") 一样- 便捷性和联合参数的估计和验证。
可以结合:class:FeatureUnion 和 [`Pipeline`](generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline "sklearn.pipeline.Pipeline") 来创造出复杂模型。
(一个 [`FeatureUnion`](generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion "sklearn.pipeline.FeatureUnion") 没办法检查两个转换器是否会产出相同的特征。它仅仅在特征集合不相关时产生联合并确认是调用者的职责。)
### 4.1.2.1. 用法
一个 [`FeatureUnion`](generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion "sklearn.pipeline.FeatureUnion") 是通过一系列 `(key, value)` 键值对来构建的,其中的 `key` 给转换器指定的名字 (一个绝对的字符串; 他只是一个代号), `value` 是一个评估器对象:
```
>>> from sklearn.pipeline import FeatureUnion
>>> from sklearn.decomposition import PCA
>>> from sklearn.decomposition import KernelPCA
>>> estimators = [('linear_pca', PCA()), ('kernel_pca', KernelPCA())]
>>> combined = FeatureUnion(estimators)
>>> combined
FeatureUnion(n_jobs=1,
transformer_list=[('linear_pca', PCA(copy=True,...)),
('kernel_pca', KernelPCA(alpha=1.0,...))],
transformer_weights=None)
```
跟管道一样,特征联合有一个精简版的构造器叫做:func:make\_union ,该构造器不需要显式给每个组价起名字。
正如 `Pipeline`, 单独的步骤可能用``set\_params``替换 ,并设置为 [``](#id12)None``来跳过:
```
>>> combined.set_params(kernel_pca=None)
...
FeatureUnion(n_jobs=1,
transformer_list=[('linear_pca', PCA(copy=True,...)),
('kernel_pca', None)],
transformer_weights=None)
```
例子:
- [Concatenating multiple feature extraction methods](../auto_examples/plot_feature_stacker.html#sphx-glr-auto-examples-plot-feature-stacker-py)
- [Feature Union with Heterogeneous Data Sources](../auto_examples/hetero_feature_union.html#sphx-glr-auto-examples-hetero-feature-union-py)
- scikit-learn 0.19 中文文档
- 用户指南
- 1. 监督学习
- 1.1. 广义线性模型
- 1.2. 线性和二次判别分析
- 1.3. 内核岭回归
- 1.4. 支持向量机
- 1.5. 随机梯度下降
- 1.6. 最近邻
- 1.7. 高斯过程
- 1.8. 交叉分解
- 1.9. 朴素贝叶斯
- 1.10. 决策树
- 1.11. 集成方法
- 1.12. 多类和多标签算法
- 1.13. 特征选择
- 1.14. 半监督学习
- 1.15. 等式回归
- 1.16. 概率校准
- 1.17. 神经网络模型(有监督)
- 2. 无监督学习
- 2.1. 高斯混合模型
- 2.2. 流形学习
- 2.3. 聚类
- 2.4. 双聚类
- 2.5. 分解成分中的信号(矩阵分解问题)
- 2.6. 协方差估计
- 2.7. 经验协方差
- 2.8. 收敛协方差
- 2.9. 稀疏逆协方差
- 2.10. Robust 协方差估计
- 2.11. 新奇和异常值检测
- 2.12. 密度估计
- 2.13. 神经网络模型(无监督)
- 3. 模型选择和评估
- 3.1. 交叉验证:评估估算器的表现
- 3.2. 调整估计器的超参数
- 3.3. 模型评估: 量化预测的质量
- 3.4. 模型持久化
- 3.5. 验证曲线: 绘制分数以评估模型
- 4. 数据集转换
- 4.1. Pipeline(管道)和 FeatureUnion(特征联合): 合并的评估器
- 4.2. 特征提取
- 4.3. 预处理数据
- 4.4. 无监督降维
- 4.5. 随机投影
- 4.6. 内核近似
- 4.7. 成对的矩阵, 类别和核函数
- 4.8. 预测目标 (y) 的转换
- 5. 数据集加载工具
- 6. 大规模计算的策略: 更大量的数据
- 7. 计算性能
- 教程
- 使用 scikit-learn 介绍机器学习
- 关于科学数据处理的统计学习教程
- 机器学习: scikit-learn 中的设置以及预估对象
- 监督学习:从高维观察预测输出变量
- 模型选择:选择估计量及其参数
- 无监督学习: 寻求数据表示
- 把它们放在一起
- 寻求帮助
- 处理文本数据
- 选择正确的评估器(estimator)
- 外部资源,视频和谈话