早期的全文检索会为整个文档集合建立一个很大的倒排索引并将其写入到磁盘。 一旦新的索引就绪,旧的就会被其替换,这样最近的变化便可以被检索到。
<br/>
倒排索引被写入磁盘后是不可改变的:它永远不会修改。
<br/>
不变性有重要的价值:
* 不需要锁。如果你从来不更新索引,你就不需要担心多进程同时修改数据的问题。
* 一旦索引被读入内核的文件系统缓存,便会留在哪里,由于其不变性。只要文件系统缓存中还有足够的空间,那么大部分读请求会直接请求内存,而不会命中磁盘。这提供了很大的性能提升。
* 其它缓存(像 filter 缓存),在索引的生命周期内始终有效。它们不需要在每次数据改变时被重建,因为数据不会变化。
* 写入单个大的倒排索引允许数据被压缩,减少磁盘 I/O 和 需要被缓存到内存的索引的使用量。
当然,一个不变的索引也有不好的地方。主要事实是它是不可变的! 你不能修改它。如果你需要让一个新的文档可被搜索,你需要重建整个索引。这要么对一个索引所能包含的数据量造成了很大的限制,要么对索引可被更新的频率造成了很大的限制。
- Elasticsearch是什么
- 全文搜索引擎
- Elasticsearch与Solr
- 数据结构
- 安装Elasticsearch
- Linux单机安装
- Windows单机安装
- 安装Kibana
- Linux安装
- Windows安装
- es基本语句
- 索引操作
- 文档操作
- 映射操作
- 高级查询
- es-JavaAPI
- maven依赖
- 索引操作
- 文档操作
- 高级查询
- es集群搭建
- Linux集群搭建
- Windows集群搭建
- 核心概念
- 索引(Index)
- 类型(Type)
- 文档(Document)
- 字段(Field)
- 映射(Mapping)
- 分片(Shards)
- 副本(Replicas)
- 分配(Allocation)
- 系统架构
- 分布式集群
- 单节点集群
- 故障转移
- 水平扩容
- 应对故障
- 路由计算
- 分片控制
- 写流程
- 读流程
- 更新流程
- 多文档操作流程
- 分片原理
- 倒排索引
- 文档搜索
- 动态更新索引
- 近实时搜索
- 持久化变更
- 段合并
- 文档分析
- 内置分析器
- 分析器使用场景
- 测试分析器
- 指定分析器
- 自定义分析器
- 文档处理
- 文档冲突
- 乐观并发控制
- 外部系统版本控制
- es优化
- 硬件选择
- 分片策略
- 合理设置分片数
- 推迟分片分配
- 路由选择
- 写入速度优化
- 批量数据提交
- 优化存储设备
- 合理使用合并
- 减少Refresh的次数
- 加大Flush设置
- 减少副本的数量
- 内存设置
- 重要配置
- es常见问题
- 为什么要使用Elasticsearch
- master选举流程
- 集群脑裂问题
- 索引文档流程
- 更新和删除文档流程
- 搜索流程
- ES部署在Linux时的优化方法
- GC方面ES需要注意的点
- ES对大数据量的聚合实现
- 并发时保证读写一致性
- 字典树
- ES的倒排索引
- Spring Data Elasticsearch
- 环境搭建
- 索引操作
- 文档操作