<mark>脑裂问题是指一个集群同时有多个主节点在工作。</mark>
<br/>
引起脑裂问题可能的成因:
* 网络问题:集群间的网络延迟导致一些节点访问不到 master,认为 master 挂掉了从而选举出新的master,并对 master 上的分片和副本标红,分配新的主分片。
* 节点负载:主节点的角色既为 master 又为 data,访问量较大时可能会导致 ES 停止响应造成大面积延迟,此时其他节点得不到主节点的响应认为主节点挂掉了,会重新选取主节点。
* 内存回收:data 节点上的 ES 进程占用的内存较大,引发 JVM 的大规模内存回收,造成 ES 进程失去响应。
脑裂问题解决方案:
* 减少误判:`discovery.zen.ping_timeout: 3s`
节点状态的响应时间,默认为 3s,可以适当调大,如果 master在该响应时间的范围内没有做出响应应答,判断该节点已经挂掉了。调大参数(如 6s,`discovery.zen.ping_timeout: 6s`),可适当减少误判。
* 选举触发: `discovery.zen.minimum_master_nodes:1`
该参数是用于控制选举行为发生的最小集群主节点数量。当备选主节点的个数大于等于该参数的值,且备选主节点中有该参数个节点认为主节点挂了,进行选举。官方建议为`(n/2)+1`,n 为主节点个数(即有资格成为主节点的节点个数)。
* 角色分离:即 master 节点与 data 节点分离,限制角色:
* 主节点配置为:`node.master: true node.data: false`
* 从节点配置为:`node.master: false node.data: true`
- Elasticsearch是什么
- 全文搜索引擎
- Elasticsearch与Solr
- 数据结构
- 安装Elasticsearch
- Linux单机安装
- Windows单机安装
- 安装Kibana
- Linux安装
- Windows安装
- es基本语句
- 索引操作
- 文档操作
- 映射操作
- 高级查询
- es-JavaAPI
- maven依赖
- 索引操作
- 文档操作
- 高级查询
- es集群搭建
- Linux集群搭建
- Windows集群搭建
- 核心概念
- 索引(Index)
- 类型(Type)
- 文档(Document)
- 字段(Field)
- 映射(Mapping)
- 分片(Shards)
- 副本(Replicas)
- 分配(Allocation)
- 系统架构
- 分布式集群
- 单节点集群
- 故障转移
- 水平扩容
- 应对故障
- 路由计算
- 分片控制
- 写流程
- 读流程
- 更新流程
- 多文档操作流程
- 分片原理
- 倒排索引
- 文档搜索
- 动态更新索引
- 近实时搜索
- 持久化变更
- 段合并
- 文档分析
- 内置分析器
- 分析器使用场景
- 测试分析器
- 指定分析器
- 自定义分析器
- 文档处理
- 文档冲突
- 乐观并发控制
- 外部系统版本控制
- es优化
- 硬件选择
- 分片策略
- 合理设置分片数
- 推迟分片分配
- 路由选择
- 写入速度优化
- 批量数据提交
- 优化存储设备
- 合理使用合并
- 减少Refresh的次数
- 加大Flush设置
- 减少副本的数量
- 内存设置
- 重要配置
- es常见问题
- 为什么要使用Elasticsearch
- master选举流程
- 集群脑裂问题
- 索引文档流程
- 更新和删除文档流程
- 搜索流程
- ES部署在Linux时的优化方法
- GC方面ES需要注意的点
- ES对大数据量的聚合实现
- 并发时保证读写一致性
- 字典树
- ES的倒排索引
- Spring Data Elasticsearch
- 环境搭建
- 索引操作
- 文档操作