当应用程序用TCP传送数据时,数据被送入协议栈中,然后逐个通过每一层直到被当作一串比特流送入网络。其中每一层对收到的数据都要增加一些首部信息(有时还要增加尾部信息),该过程如图1-7所示。TCP传给IP的数据单元称作TCP报文段或简称为TCP段(TCP segment)。IP传给网络接口层的数据单元称作IP数据报(IP datagram)。通过以太网传输的比特流称作帧(Frame)。
图1 - 7中帧头和帧尾下面所标注的数字是典型以太网帧首部的字节长度。在后面的章节中我们将详细讨论这些帧头的具体含义。
以太网数据帧的物理特性是其长度必须在46~1500字节之间。我们将在4.5节遇到最小长度的数据帧,在2 . 8节中遇到最大长度的数据帧。
所有的Internet标准和大多数有关TCP/IP的书都使用octet这个术语来表示字节。使用这个过分雕琢的术语是有历史原因的,因为T C P / I P的很多工作都是在D E C - 1 0系统上进行的,但是它并不使用8 bit的字节。由于现在几乎所有的计算机系统都采用8 bit的字节,因此我们在本书中使用字节(byte)这个术语。
更准确地说,图1-7中IP和网络接口层之间传送的数据单元应该是分组(packet)。分组既可以是一个IP数据报,也可以是IP数据报的一个片(fragment)。我们将在11.5节讨论IP数据报分片的详细情况。
![](https://box.kancloud.cn/2016-04-12_570c6d4a0cb3c.png)
UDP数据与TCP数据基本一致。唯一的不同是UDP传给IP的信息单元称作U D P数据报(UDP datagram),而且UDP的首部长为8字节。
回想1.3节中的图1-4,由于TCP、UDP、ICMP和IGMP都要向IP传送数据,因此I P必须在生成的IP首部中加入某种标识,以表明数据属于哪一层。为此, IP在首部中存入一个长度为8bit的数值,称作协议域。1表示为ICMP协议, 2表示为IGMP协议,6表示为TCP协议,17表示为UDP协议。
类似地,许多应用程序都可以使用TCP或UDP来传送数据。运输层协议在生成报文首部时要存入一个应用程序的标识符。TCP和UDP都用一个16bit的端口号来表示不同的应用程序。TCP和UDP把源端口号和目的端口号分别存入报文首部中。
网络接口分别要发送和接收IP、ARP和RARP数据,因此也必须在以太网的帧首部中加入某种形式的标识,以指明生成数据的网络层协议。为此,以太网的帧首部也有一个16 bit的帧类型域。
- 第1章 概述
- 1.1 引言
- 1.2 分层
- 1.3 TCP/IP的分层
- 1.4 互联网的地址
- 1.5 域名系统
- 1.6 封装
- 1.7 分用
- 1.8 客户-服务器模型
- 1.9 端口号
- 1.10 标准化过程
- 1.11 RFC
- 1.12 标准的简单服务
- 1.13 互联网
- 1.14 实现
- 1.15 应用编程接口
- 1.16 测试网络
- 1.17 小结
- 第2章 链路层
- 2.1 引言
- 2.2 以太网和IEEE 802封装
- 2.3 尾部封装
- 2.4 SLIP:串行线路IP
- 2.5 压缩的SLIP
- 2.6 PPP:点对点协议
- 2.7 环回接口
- 2.8 最大传输单元MTU
- 2.9 路径MTU
- 2.10 串行线路吞吐量计算
- 2.11 小结
- 第3章 IP:网际协议
- 3.1 引言
- 3.2 IP首部
- 3.3 IP路由选择
- 3.4 子网寻址
- 3.5 子网掩码
- 3.6 特殊情况的IP地址
- 3.7 一个子网的例子
- 3.8 ifconfig命令
- 3.9 netstat命令
- 3.10 IP的未来
- 3.11 小结
- 第4章 ARP:地址解析协议
- 4.1 引言
- 4.2 一个例子
- 4.3 ARP高速缓存
- 4.4 ARP的分组格式
- 4.5 ARP举例
- 4.5.1 一般的例子
- 4.5.2 对不存在主机的ARP请求
- 4.5.3 ARP高速缓存超时设置
- 4.6 ARP代理
- 4.7 免费ARP
- 4.8 arp命令
- 4.9 小结
- 第5章 RARP:逆地址解析协议
- 5.1 引言
- 5.2 RARP的分组格式
- 5.3 RARP举例
- 5.4 RARP服务器的设计
- 5.4.1 作为用户进程的RARP服务器
- 5.4.2 每个网络有多个RARP服务器
- 5.5 小结
- 第6章 ICMP:Internet控制报文协议
- 6.1 引言
- 6.2 ICMP报文的类型
- 6.3 ICMP地址掩码请求与应答
- 6.4 ICMP时间戳请求与应答
- 6.4.1 举例
- 6.4.2 另一种方法
- 6.5 ICMP端口不可达差错
- 6.6 ICMP报文的4.4BSD处理
- 6.7 小结
- 第7章 Ping程序
- 7.1 引言
- 7.2 Ping程序
- 7.2.1 LAN输出
- 7.2.2 WAN输出
- 7.2.3 线路SLIP链接
- 7.2.4 拨号SLIP链路
- 7.3 IP记录路由选项
- 7.3.1 通常的例子
- 7.3.2 异常的输出
- 7.4 IP时间戳选项
- 7.5 小结
- 第8章 Traceroute程序
- 8.1 引言
- 8.2 Traceroute程序的操作
- 8.3 局域网输出
- 8.4 广域网输出
- 8.5 IP源站选路选项
- 8.5.1 宽松的源站选路的traceroute程序示例
- 8.5.2 严格的源站选路的traceroute程序示例
- 8.5.3 宽松的源站选路traceroute程序的往返路由
- 8.6 小结
- 第9章 IP选路
- 9.1 引言
- 9.2 选路的原理
- 9.2.1 简单路由表
- 9.2.2 初始化路由表
- 9.2.3 较复杂的路由表
- 9.2.4 没有到达目的地的路由
- 9.3 ICMP主机与网络不可达差错
- 9.4 转发或不转发
- 9.5 ICMP重定向差错
- 9.5.1 一个例子
- 9.5.2 更多的细节
- 9.6 ICMP路由器发现报文
- 9.6.1 路由器操作
- 9.6.2 主机操作
- 9.6.3 实现
- 9.7 小结