IP主要存在三个方面的问题。这是Internet在过去几年快速增长所造成的结果(参见习题1.2)。
1) 超过半数的B类地址已被分配。根据估计,它们大约在1995年耗尽。
2) 32 bit的IP地址从长期的Internet增长角度来看,一般是不够用的。
3) 当前的路由结构没有层次结构,属于平面型(flat)结构,每个网络都需要一个路由表目。
随着网络数目的增长,一个具有多个网络的网站就必须分配多个C类地址,而不是一个B类地址,因此路由表的规模会不断增长。
无类别的域间路由选择C I D R(Classless Interdomain Routing)提出了一个可以解决第三个问题的建议,对当前版本的IP(IP版本4)进行扩充,以适应21世纪Internet的发展。对此我们将在10.8节进一步详细介绍。
对新版的IP,即下一代IP,经常称作IPng,主要有四个方面的建议。1993年5月发行的IEEE Network(vol.7,no.3)对前三个建议进行了综述,同时有一篇关于CIDR的论文。RFC 1454 [Dixon 1993]对前三个建议进行了比较。
1) SIP,简单Internet协议。它针对当前的IP提出了一个最小幅度的修改建议,采用64位地址和一个不同的首部格式(首部的前4比特仍然包含协议的版本号,其值不再是4)。
2) PIP。这个建议也采用了更大的、可变长度的和有层次结构的地址,而且首部格式也不相同。
3) TUBA, 代表“ TCP and UDP with Bigger Address ”, 它基于OSI 的CLNP(Connectionless Network Protocol,无连接网络协议),一个与IP类似的OSI协议。它提供大得多的地址空间:可变长度,可达20个字节。由于CLNP是一个现有的协议,而SIP和PIP只是建议,因此关于CLNP的文档已经出现。RFC 1347[Callon 1992]提供了T U B A的有关细节。文献[Perlman 1992]的第7章对IPv4和CLNP进行了比较。许多路由器已经支持CLNP,但是很少有主机也提供支持。
4) TP/IX,由RFC 1475 [Ullmann 1993]对它进行了描述。虽然SIP采用了64 bit的址址,但是它还改变了TCP和UDP的格式:两个协议均为32 bit的端口号,64 bit的序列号,64 bit的确认号,以及TCP的32 bit窗口。
前三个建议基本上采用了相同版本的TCP和UDP作为传输层协议。
由于四个建议只能有一个被选为IPv4的替换者,而且在你读到此书时可能已经做出选择,因此我们对它们不进行过多评论。虽然CIDR即将实现以解决目前的短期问题,但是IPv4后继者的实现则需要经过许多年。
- 第1章 概述
- 1.1 引言
- 1.2 分层
- 1.3 TCP/IP的分层
- 1.4 互联网的地址
- 1.5 域名系统
- 1.6 封装
- 1.7 分用
- 1.8 客户-服务器模型
- 1.9 端口号
- 1.10 标准化过程
- 1.11 RFC
- 1.12 标准的简单服务
- 1.13 互联网
- 1.14 实现
- 1.15 应用编程接口
- 1.16 测试网络
- 1.17 小结
- 第2章 链路层
- 2.1 引言
- 2.2 以太网和IEEE 802封装
- 2.3 尾部封装
- 2.4 SLIP:串行线路IP
- 2.5 压缩的SLIP
- 2.6 PPP:点对点协议
- 2.7 环回接口
- 2.8 最大传输单元MTU
- 2.9 路径MTU
- 2.10 串行线路吞吐量计算
- 2.11 小结
- 第3章 IP:网际协议
- 3.1 引言
- 3.2 IP首部
- 3.3 IP路由选择
- 3.4 子网寻址
- 3.5 子网掩码
- 3.6 特殊情况的IP地址
- 3.7 一个子网的例子
- 3.8 ifconfig命令
- 3.9 netstat命令
- 3.10 IP的未来
- 3.11 小结
- 第4章 ARP:地址解析协议
- 4.1 引言
- 4.2 一个例子
- 4.3 ARP高速缓存
- 4.4 ARP的分组格式
- 4.5 ARP举例
- 4.5.1 一般的例子
- 4.5.2 对不存在主机的ARP请求
- 4.5.3 ARP高速缓存超时设置
- 4.6 ARP代理
- 4.7 免费ARP
- 4.8 arp命令
- 4.9 小结
- 第5章 RARP:逆地址解析协议
- 5.1 引言
- 5.2 RARP的分组格式
- 5.3 RARP举例
- 5.4 RARP服务器的设计
- 5.4.1 作为用户进程的RARP服务器
- 5.4.2 每个网络有多个RARP服务器
- 5.5 小结
- 第6章 ICMP:Internet控制报文协议
- 6.1 引言
- 6.2 ICMP报文的类型
- 6.3 ICMP地址掩码请求与应答
- 6.4 ICMP时间戳请求与应答
- 6.4.1 举例
- 6.4.2 另一种方法
- 6.5 ICMP端口不可达差错
- 6.6 ICMP报文的4.4BSD处理
- 6.7 小结
- 第7章 Ping程序
- 7.1 引言
- 7.2 Ping程序
- 7.2.1 LAN输出
- 7.2.2 WAN输出
- 7.2.3 线路SLIP链接
- 7.2.4 拨号SLIP链路
- 7.3 IP记录路由选项
- 7.3.1 通常的例子
- 7.3.2 异常的输出
- 7.4 IP时间戳选项
- 7.5 小结
- 第8章 Traceroute程序
- 8.1 引言
- 8.2 Traceroute程序的操作
- 8.3 局域网输出
- 8.4 广域网输出
- 8.5 IP源站选路选项
- 8.5.1 宽松的源站选路的traceroute程序示例
- 8.5.2 严格的源站选路的traceroute程序示例
- 8.5.3 宽松的源站选路traceroute程序的往返路由
- 8.6 小结
- 第9章 IP选路
- 9.1 引言
- 9.2 选路的原理
- 9.2.1 简单路由表
- 9.2.2 初始化路由表
- 9.2.3 较复杂的路由表
- 9.2.4 没有到达目的地的路由
- 9.3 ICMP主机与网络不可达差错
- 9.4 转发或不转发
- 9.5 ICMP重定向差错
- 9.5.1 一个例子
- 9.5.2 更多的细节
- 9.6 ICMP路由器发现报文
- 9.6.1 路由器操作
- 9.6.2 主机操作
- 9.6.3 实现
- 9.7 小结