由于串行线路的速率通常较低(19200b/s或更低),而且通信经常是交互式的(如Telnet和Rlogin,二者都使用TCP),因此在SLIP线路上有许多小的TCP分组进行交换。为了传送1个字节的数据需要20个字节的IP首部和20个字节的TCP首部,总数超过40个字节(19.2节描述了Rlogin会话过程中,当敲入一个简单命令时这些小报文传输的详细情况)。
既然承认这些性能上的缺陷,于是人们提出一个被称作CSLIP(即压缩SLIP)的新协议,它在RFC 1144[Jacobson 1990a]中被详细描述。CSLIP一般能把上面的40个字节压缩到3或5个字节。它能在CSLIP的每一端维持多达16个TCP连接,并且知道其中每个连接的首部中的某些字段一般不会发生变化。对于那些发生变化的字段,大多数只是一些小的数字和的改变。这些被压缩的首部大大地缩短了交互响应时间。
现在大多数的SLIP产品都支持CSLIP。作者所在的子网(参见封面内页)中有两条SLIP链路,它们均是CSLIP链路。
- 第1章 概述
- 1.1 引言
- 1.2 分层
- 1.3 TCP/IP的分层
- 1.4 互联网的地址
- 1.5 域名系统
- 1.6 封装
- 1.7 分用
- 1.8 客户-服务器模型
- 1.9 端口号
- 1.10 标准化过程
- 1.11 RFC
- 1.12 标准的简单服务
- 1.13 互联网
- 1.14 实现
- 1.15 应用编程接口
- 1.16 测试网络
- 1.17 小结
- 第2章 链路层
- 2.1 引言
- 2.2 以太网和IEEE 802封装
- 2.3 尾部封装
- 2.4 SLIP:串行线路IP
- 2.5 压缩的SLIP
- 2.6 PPP:点对点协议
- 2.7 环回接口
- 2.8 最大传输单元MTU
- 2.9 路径MTU
- 2.10 串行线路吞吐量计算
- 2.11 小结
- 第3章 IP:网际协议
- 3.1 引言
- 3.2 IP首部
- 3.3 IP路由选择
- 3.4 子网寻址
- 3.5 子网掩码
- 3.6 特殊情况的IP地址
- 3.7 一个子网的例子
- 3.8 ifconfig命令
- 3.9 netstat命令
- 3.10 IP的未来
- 3.11 小结
- 第4章 ARP:地址解析协议
- 4.1 引言
- 4.2 一个例子
- 4.3 ARP高速缓存
- 4.4 ARP的分组格式
- 4.5 ARP举例
- 4.5.1 一般的例子
- 4.5.2 对不存在主机的ARP请求
- 4.5.3 ARP高速缓存超时设置
- 4.6 ARP代理
- 4.7 免费ARP
- 4.8 arp命令
- 4.9 小结
- 第5章 RARP:逆地址解析协议
- 5.1 引言
- 5.2 RARP的分组格式
- 5.3 RARP举例
- 5.4 RARP服务器的设计
- 5.4.1 作为用户进程的RARP服务器
- 5.4.2 每个网络有多个RARP服务器
- 5.5 小结
- 第6章 ICMP:Internet控制报文协议
- 6.1 引言
- 6.2 ICMP报文的类型
- 6.3 ICMP地址掩码请求与应答
- 6.4 ICMP时间戳请求与应答
- 6.4.1 举例
- 6.4.2 另一种方法
- 6.5 ICMP端口不可达差错
- 6.6 ICMP报文的4.4BSD处理
- 6.7 小结
- 第7章 Ping程序
- 7.1 引言
- 7.2 Ping程序
- 7.2.1 LAN输出
- 7.2.2 WAN输出
- 7.2.3 线路SLIP链接
- 7.2.4 拨号SLIP链路
- 7.3 IP记录路由选项
- 7.3.1 通常的例子
- 7.3.2 异常的输出
- 7.4 IP时间戳选项
- 7.5 小结
- 第8章 Traceroute程序
- 8.1 引言
- 8.2 Traceroute程序的操作
- 8.3 局域网输出
- 8.4 广域网输出
- 8.5 IP源站选路选项
- 8.5.1 宽松的源站选路的traceroute程序示例
- 8.5.2 严格的源站选路的traceroute程序示例
- 8.5.3 宽松的源站选路traceroute程序的往返路由
- 8.6 小结
- 第9章 IP选路
- 9.1 引言
- 9.2 选路的原理
- 9.2.1 简单路由表
- 9.2.2 初始化路由表
- 9.2.3 较复杂的路由表
- 9.2.4 没有到达目的地的路由
- 9.3 ICMP主机与网络不可达差错
- 9.4 转发或不转发
- 9.5 ICMP重定向差错
- 9.5.1 一个例子
- 9.5.2 更多的细节
- 9.6 ICMP路由器发现报文
- 9.6.1 路由器操作
- 9.6.2 主机操作
- 9.6.3 实现
- 9.7 小结