在前面的4.3小节中,我们介绍了Android系统运行时库层的日志库写入接口,但是在实际开发中,我们一般不会直接使用这些接口来写日志。在实际开发中,我们常常希望有些日志只在程序的调试版本中输出,而不希望它们在发布版本中输出。Android系统就提供了三组常用的C/C++宏来封装日志写入接口,这些宏有的在程序的非调试版本中只是一个空定义,因此,可以避免在程序的发布版本中输出日志。
第一组宏是LOGV、LOGD、LOGI、LOGW和LOGE,它们用来写入类型为main的日志记录;第二组宏是SLOGV、SLOGD、SLOGI、SLOGW和SLOGE,它们用来写入类型为system的日志记录;第三组宏是LOG_EVENT_INT、LOG_EVENT_LONG和LOG_EVENT_STRING,它们用来写入类型为events的日志记录。这些宏定义在Android系统运行时库层的一个头文件log.h中,它的位置如下所示。
~~~
~/Android/system/core/include
----cutils
---- log.h
~~~
这个头文件定义了一个宏LOG_NDEBUG,用来区分程序是调试版本还是发布版本,如下所示。
**system/core/include/cutils/log.h**
~~~
/*
* Normally we strip LOGV (VERBOSE messages) from release builds.
* You can modify this (for example with "#define LOG_NDEBUG 0"
* at the top of your source file) to change that behavior.
*/
#ifndef LOG_NDEBUG
#ifdef NDEBUG
#define LOG_NDEBUG 1
#else
#define LOG_NDEBUG 0
#endif
#endif
~~~
在程序的发布版本中,宏LOG_NDEBUG定义为1,而在调试版本中定义为0。通过这个宏,我们就可以将某些日志宏在程序的发布版本中定义为空,从而限制它们在程序的发布版本中输出。
这个头文件还定义了宏LOG_TAG,用作当前编译单元的默认日志记录标签,它的定义如下所示。
**system/core/include/cutils/log.h**
~~~
/*
* This is the local tag used for the following simplified
* logging macros. You can change this preprocessor definition
* before using the other macros to change the tag.
*/
#ifndef LOG_TAG
#define LOG_TAG NULL
#endif
~~~
它默认定义为NULL,即没有日志记录标签。如果一个模块想要定义自己的默认日志记录标签,那么就需要使用#define指令来自定义宏LOG_TAG的值。
了解了这两个宏的定义之后,我们就开始分析这三组C/C++日志宏的实现。
**LOGV、LOGD、LOGI、LOGW和LOGE**
**system/core/include/cutils/log.h**
~~~
/*
* Simplified macro to send a verbose log message using the current LOG_TAG.
*/
#ifndef LOGV
#if LOG_NDEBUG
#define LOGV(...) ((void)0)
#else
#define LOGV(...) ((void)LOG(LOG_VERBOSE, LOG_TAG, __VA_ARGS__))
#endif
#endif
/*
* Simplified macro to send a debug log message using the current LOG_TAG.
*/
#ifndef LOGD
#define LOGD(...) ((void)LOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__))
#endif
/*
* Simplified macro to send an info log message using the current LOG_TAG.
*/
#ifndef LOGI
#define LOGI(...) ((void)LOG(LOG_INFO, LOG_TAG, __VA_ARGS__))
#endif
/*
* Simplified macro to send a warning log message using the current LOG_TAG.
*/
#ifndef LOGW
#define LOGW(...) ((void)LOG(LOG_WARN, LOG_TAG, __VA_ARGS__))
#endif
/*
* Simplified macro to send an error log message using the current LOG_TAG.
*/
#ifndef LOGE
#define LOGE(...) ((void)LOG(LOG_ERROR, LOG_TAG, __VA_ARGS__))
#endif
~~~
这五个宏是用来写入类型为main的日志记录的,它们写入的日志记录的优先级分别为VERBOSE、DEBUG、INFO、WARN和ERROR。其中,宏LOGV只有在宏LOG_NDEBUG定义为0时,即在程序的调试版本中,才是有效的;否则,它只是一个空定义。
这五个宏是通过使用宏LOG来实现日志写入功能的,它的定义如下所示。
**system/core/include/cutils/log.h**
~~~
/*
* Basic log message macro.
*
* Example:
* LOG(LOG_WARN, NULL, "Failed with error %d", errno);
*
* The second argument may be NULL or "" to indicate the "global" tag.
*/
#ifndef LOG
#define LOG(priority, tag, ...) \
LOG_PRI(ANDROID_##priority, tag, __VA_ARGS__)
#endif
/*
* Log macro that allows you to specify a number for the priority.
*/
#ifndef LOG_PRI
#define LOG_PRI(priority, tag, ...) \
android_printLog(priority, tag, __VA_ARGS__)
#endif
#define android_printLog(prio, tag, fmt...) \
__android_log_print(prio, tag, fmt)
~~~
当宏LOG展开后,它的第一个参数priority加上前缀“ANDROID_”之后,就变成了另外一个宏LOG_PRI的第一个参数。例如,宏LOGV展开后就得到宏LOG_PRI的第一个参数为ANDROID_LOG_VERBOSE。这些形式为ANDROID_##priority的参数都是类型为android_LogPriority的枚举值,它们的定义如下所示。
**system/core/include/android/log.h**
~~~
/*
* Android log priority values, in ascending priority order.
*/
typedef enum android_LogPriority {
ANDROID_LOG_UNKNOWN = 0,
ANDROID_LOG_DEFAULT, /* only for SetMinPriority() */
ANDROID_LOG_VERBOSE,
ANDROID_LOG_DEBUG,
ANDROID_LOG_INFO,
ANDROID_LOG_WARN,
ANDROID_LOG_ERROR,
ANDROID_LOG_FATAL,
ANDROID_LOG_SILENT, /* only for SetMinPriority(); must be last */
} android_LogPriority;
~~~
回到宏LOG_PRI的定义中,它最终是通过调用日志库liblog提供的函数__android_log_print向Logger日志驱动程序中写入日志记录的。函数__android_log_print的实现可以参考前面4.3小节的内容,这里不再详述。
**SLOGV、SLOGD、SLOGI、SLOGW和SLOGE**
**system/core/include/cutils/log.h**
~~~
/*
* Simplified macro to send a verbose system log message using the current LOG_TAG.
*/
#ifndef SLOGV
#if LOG_NDEBUG
#define SLOGV(...) ((void)0)
#else
#define SLOGV(...) ((void)__android_log_buf_print(LOG_ID_SYSTEM, ANDROID_LOG_VERBOSE, LOG_TAG, __VA_ARGS__))
#endif
#endif
/*
* Simplified macro to send a debug system log message using the current LOG_TAG.
*/
#ifndef SLOGD
#define SLOGD(...) ((void)__android_log_buf_print(LOG_ID_SYSTEM, ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__))
#endif
/*
* Simplified macro to send an info system log message using the current LOG_TAG.
*/
#ifndef SLOGI
#define SLOGI(...) ((void)__android_log_buf_print(LOG_ID_SYSTEM, ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__))
#endif
/*
* Simplified macro to send a warning system log message using the current LOG_TAG.
*/
#ifndef SLOGW
#define SLOGW(...) ((void)__android_log_buf_print(LOG_ID_SYSTEM, ANDROID_LOG_WARN, LOG_TAG, __VA_ARGS__))
#endif
/*
* Simplified macro to send an error system log message using the current LOG_TAG.
*/
#ifndef SLOGE
#define SLOGE(...) ((void)__android_log_buf_print(LOG_ID_SYSTEM, ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__))
#endif
~~~
这五个宏是用来写入类型为system的日志记录的,它们写入的日志记录的优先级分别为VERBOSE、DEBUG、INFO、WARN和ERROR。其中,宏SLOGV只有在宏LOG_NDEBUG定义为0时,即在程序的调试版本中,才是有效的;否则,它只是一个空定义。
这五个宏展开之后,实际上是通过调用日志库liblog提供的函数__android_log_buf_print向Logger日志驱动程序中写入日志记录的。函数__android_log_buf_print的实现可以参考前面4.3小节的内容,这里不再详述。
**LOG_EVENT_INT、LOG_EVENT_LONG和LOG_EVENT_STRING**
**system/core/include/cutils/log.h**
~~~
/*
* Event log entry types. These must match up with the declarations in
* java/android/android/util/EventLog.java.
*/
typedef enum {
EVENT_TYPE_INT = 0,
EVENT_TYPE_LONG = 1,
EVENT_TYPE_STRING = 2,
EVENT_TYPE_LIST = 3,
} AndroidEventLogType;
#define LOG_EVENT_INT(_tag, _value) { \
int intBuf = _value; \
(void) android_btWriteLog(_tag, EVENT_TYPE_INT, &intBuf, \
sizeof(intBuf)); \
}
#define LOG_EVENT_LONG(_tag, _value) { \
long long longBuf = _value; \
(void) android_btWriteLog(_tag, EVENT_TYPE_LONG, &longBuf, \
sizeof(longBuf)); \
}
#define LOG_EVENT_STRING(_tag, _value) \
((void) 0) /* not implemented -- must combine len with string */
/* TODO: something for LIST */
#define android_btWriteLog(tag, type, payload, len) \
__android_log_btwrite(tag, type, payload, len)
~~~
这三个宏是用来写入类型为events的日志记录的。第6行到第9行首先定义了四个枚举值,它们分别用来代表一个整数(int)、长整数(long)、字符串(string)和列表(list)。前面提到,类型为events的日志记录的内容是由一系列值组成的,这些值是具有类型的,分别对应于EVENT_TYPE_INT、EVENT_TYPE_LONG、EVENT_TYPE_STRING和EVENT_TYPE_LIST四种类型。
宏LOG_EVENT_INT和LOG_EVENT_LONG写入的日志记录的内容分别是一个整数和一个长整数。它们展开之后,实际上是通过调用日志库liblog提供的函数__android_log_btwrite来往Logger日志驱动程序中写入日志记录的。函数__android_log_btwrite的实现可以参考前面4.3小节的内容,这里不再详述。
宏LOG_EVENT_STRING用来往Logger日志驱动程序中写入一条内容为字符串值的日志记录,但是在目前版本的实现中,它只是一个空定义。此外,在目前版本中,系统也没有定义一个用来写入内容为列表的日志记录宏。因此,如果需要往Logger日志驱动程序中写入一条内容为字符串或者列表的日志记录,那么就必须直接使用日志库liblog提供的函数__android_log_bwrite或者__android_log_btwrite。
- 文章概述
- 下载Android源码以及查看源码
- win10 平台通过VMware Workstation安装Ubuntu
- Linux系统安装Ubuntu编译Android源码
- Eclipse快捷键大全
- 前言
- 第一篇 初识Android系统
- 第一章 准备知识
- 1.1 Linux内核参考书籍
- 1.2 Android应用程序参考书籍
- 1.3 下载、编译和运行Android源代码
- 1.3.1 下载Android源代码
- 1.3.2 编译Android源代码
- 1.3.3 运行Android模拟器
- 1.4 下载、编译和运行Android内核源代码
- 1.4.1 下载Android内核源代码
- 1.4.2 编译Android内核源代码
- 1.4.3 运行Android模拟器
- 1.5 开发第一个Android应用程序
- 1.6 单独编译和打包Android应用程序模块
- 1.6.1 导入单独编译模块的mmm命令
- 1.6.2 单独编译Android应用程序模块
- 1.6.3 重新打包Android系统镜像文件
- 第二章 硬件抽象层
- 2.1 开发Android硬件驱动程序
- 2.1.1 实现内核驱动程序模块
- 2.1.2 修改内核Kconfig文件
- 2.1.3 修改内核Makefile文件
- 2.1.4 编译内核驱动程序模块
- 2.1.5 验证内核驱动程序模块
- 2.2 开发C可执行程序验证Android硬件驱动程序
- 2.3 开发Android硬件抽象层模块
- 2.3.1 硬件抽象层模块编写规范
- 2.3.1.1 硬件抽象层模块文件命名规范
- 2.3.1.2 硬件抽象层模块结构体定义规范
- 2.3.2 编写硬件抽象层模块接口
- 2.3.3 硬件抽象层模块的加载过程
- 2.3.4 处理硬件设备访问权限问题
- 2.4 开发Android硬件访问服务
- 2.4.1 定义硬件访问服务接口
- 2.4.2 实现硬件访问服务
- 2.4.3 实现硬件访问服务的JNI方法
- 2.4.4 启动硬件访问服务
- 2.5 开发Android应用程序来使用硬件访问服务
- 第三章 智能指针
- 3.1 轻量级指针
- 3.1.1 实现原理分析
- 3.1.2 使用实例分析
- 3.2 强指针和弱指针
- 3.2.1 强指针的实现原理分析
- 3.2.2 弱指针的实现原理分析
- 3.2.3 应用实例分析
- 第二篇 Android专用驱动系统
- 第四章 Logger日志系统
- 4.1 Logger日志格式
- 4.2 Logger日志驱动程序
- 4.2.1 基础数据结构
- 4.2.2 日志设备的初始化过程
- 4.2.3 日志设备文件的打开过程
- 4.2.4 日志记录的读取过程
- 4.2.5 日志记录的写入过程
- 4.3 运行时库层日志库
- 4.4 C/C++日志写入接口
- 4.5 Java日志写入接口
- 4.6 Logcat工具分析
- 4.6.1 基础数据结构
- 4.6.2 初始化过程
- 4.6.3 日志记录的读取过程
- 4.6.4 日志记录的输出过程
- 第五章 Binder进程间通信系统
- 5.1 Binder驱动程序
- 5.1.1 基础数据结构
- 5.1.2 Binder设备的初始化过程
- 5.1.3 Binder设备文件的打开过程
- 5.1.4 设备文件内存映射过程
- 5.1.5 内核缓冲区管理
- 5.1.5.1 分配内核缓冲区
- 5.1.5.2 释放内核缓冲区
- 5.1.5.3 查询内核缓冲区
- 5.2 Binder进程间通信库
- 5.3 Binder进程间通信应用实例
- 5.4 Binder对象引用计数技术
- 5.4.1 Binder本地对象的生命周期
- 5.4.2 Binder实体对象的生命周期
- 5.4.3 Binder引用对象的生命周期
- 5.4.4 Binder代理对象的生命周期
- 5.5 Binder对象死亡通知机制
- 5.5.1 注册死亡接收通知
- 5.5.2 发送死亡接收通知
- 5.5.3 注销死亡接收通知
- 5.6 Service Manager的启动过程
- 5.6.1 打开和映射Binder设备文件
- 5.6.2 注册成为Binder上下文管理者
- 5.6.3 循环等待Client进程请求
- 5.7 Service Manager代理对象接口的获取过程
- 5.8 Service的启动过程
- 5.8.1 注册Service组件
- 5.8.1.1 封装通信数据为Parcel对象
- 5.8.1.2 发送和处理BC_TRANSACTION命令协议
- 5.8.1.3 发送和处理BR_TRANSACTION返回协议
- 5.8.1.4 发送和处理BC_REPLY命令协议
- 5.8.1.5 发送和处理BR_REPLY返回协议
- 5.8.2 循环等待Client进程请求
- 5.9 Service代理对象接口的获取过程
- 5.10 Binder进程间通信机制的Java实现接口
- 5.10.1 获取Service Manager的Java代理对象接口
- 5.10.2 AIDL服务接口解析
- 5.10.3 Java服务的启动过程
- 5.10.4 获取Java服务的代理对象接口
- 5.10.5 Java服务的调用过程
- 第六章 Ashmem匿名共享内存系统
- 6.1 Ashmem驱动程序
- 6.1.1 相关数据结构
- 6.1.2 设备初始化过程
- 6.1.3 设备文件打开过程
- 6.1.4 设备文件内存映射过程
- 6.1.5 内存块的锁定和解锁过程
- 6.1.6 解锁状态内存块的回收过程
- 6.2 运行时库cutils的匿名共享内存接口
- 6.3 匿名共享内存的C++访问接口
- 6.3.1 MemoryHeapBase
- 6.3.1.1 Server端的实现
- 6.3.1.2 Client端的实现
- 6.3.2 MemoryBase
- 6.3.2.1 Server端的实现
- 6.3.2.2 Client端的实现
- 6.3.3 应用实例
- 6.4 匿名共享内存的Java访问接口
- 6.4.1 MemoryFile
- 6.4.2 应用实例
- 6.5 匿名共享内存的共享原理分析
- 第三篇 Android应用程序框架篇
- 第七章 Activity组件的启动过程
- 7.1 Activity组件应用实例
- 7.2 根Activity的启动过程
- 7.3 Activity在进程内的启动过程
- 7.4 Activity在新进程中的启动过程
- 第八章 Service组件的启动过程
- 8.1 Service组件应用实例
- 8.2 Service在新进程中的启动过程
- 8.3 Service在进程内的绑定过程
- 第九章 Android系统广播机制
- 9.1 广播应用实例
- 9.2 广播接收者的注册过程
- 9.3 广播的发送过程
- 第十章 Content Provider组件的实现原理
- 10.1 Content Provider组件应用实例
- 10.1.1 ArticlesProvider
- 10.1.2 Article
- 10.2 Content Provider组件的启动过程
- 10.3 Content Provider组件的数据共享原理
- 10.4 Content Provider组件的数据更新通知机制
- 10.4.1 内容观察者的注册过程
- 10.4.2 数据更新的通知过程
- 第十一章 Zygote和System进程的启动过程
- 11.1 Zygote进程的启动脚本
- 11.2 Zygote进程的启动过程
- 11.3 System进程的启动过程
- 第十二章 Android应用程序进程的启动过程
- 12.1 应用程序进程的创建过程
- 12.2 Binder线程池的启动过程
- 12.3 消息循环的创建过程
- 第十三章 Android应用程序的消息处理机制
- 13.1 创建线程消息队列
- 13.2 线程消息循环过程
- 13.3 线程消息发送过程
- 13.4 线程消息处理过程
- 第十四章 Android应用程序的键盘消息处理机制
- 14.1 InputManager的启动过程
- 14.1.1 创建InputManager
- 14.1.2 启动InputManager
- 14.1.3 启动InputDispatcher
- 14.1.4 启动InputReader
- 14.2 InputChannel的注册过程
- 14.2.1 创建InputChannel
- 14.2.2 注册Server端InputChannel
- 14.2.3 注册当前激活窗口
- 14.2.4 注册Client端InputChannel
- 14.3 键盘消息的分发过程
- 14.3.1 InputReader处理键盘事件
- 14.3.2 InputDispatcher分发键盘事件
- 14.3.3 当前激活的窗口获得键盘消息
- 14.3.4 InputDispatcher获得键盘事件处理完成通知
- 14.4 InputChannel的注销过程
- 14.4.1 销毁应用程序窗口
- 14.4.2 注销Client端InputChannel
- 14.4.3 注销Server端InputChannel
- 第十五章 Android应用程序线程的消息循环模型
- 15.1 应用程序主线程消息循环模型
- 15.2 界面无关的应用程序子线程消息循环模型
- 15.3 界面相关的应用程序子线程消息循环模型
- 第十六章 Android应用程序的安装和显示过程
- 16.1 应用程序的安装过程
- 16.2 应用程序的显示过程