AVL树是一个“加上了额外平衡条件”的二叉搜索树。其平衡条件的建立时为了确保树的深度为O(longN)。AVL树要求任何节点左右子树的高度相差不超过1。
插入操作:左-左插入和右-右插入需要单旋转;
左-右插入和右-左插入需要双旋转。
其实,AVL树的插入删除操作和[二叉查找树的操作](http://blog.csdn.net/u013074465/article/details/41699891)类似,只是需要注意调整树的平衡。
# AVL树 C语言实现
删除操作的旋转示意图:
![](https://box.kancloud.cn/2016-06-07_575683a470879.jpg)
![](https://box.kancloud.cn/2016-06-07_575683a484c5a.jpg)
![](https://box.kancloud.cn/2016-06-07_575683a49bebf.jpg)
![](https://box.kancloud.cn/2016-06-07_575683a4b0e29.jpg)
在下面的代码中,插入删除过程中,对树平衡的调整完全可以封装为函数,显得简洁,但懒人我没写成函数。
~~~
//3avl_tree.c
#include "3avl_tree.h"
#include "test.h"
AvlTree MakeEmptyAvlTree(AvlTree avltree) {
if (avltree != NULL) {
MakeEmptyAvlTree(avltree->left);
MakeEmptyAvlTree(avltree->right);
free(avltree);
}
return NULL;
}
Position FindAvlTree(ElementType x, AvlTree avltree) {
if (avltree == NULL)
return NULL;
if (x < avltree->element)
return FindAvlTree(x, avltree->left);
else if (x > avltree->element)
return FindAvlTree(x, avltree->right);
else
return avltree;
}
Position FindMinFromAvlTree(AvlTree avltree) {
if (avltree == NULL)
return NULL;
else if (avltree->left == NULL)
return avltree;
else
return FindMinFromAvlTree(avltree->left);
}
Position FindMaxFromAvlTree(AvlTree avltree) {
if (avltree == NULL)
return NULL;
else if (avltree->right == NULL)
return avltree;
else
return FindMaxFromAvlTree(avltree->right);
}
static int HeightAvlTree(AvlTree avltree) {
if (avltree == NULL)
return -1;
else
return avltree->height;
}
static int Max(int lhs, int rhs) {
return lhs > rhs ? lhs : rhs;
}
//左-左插入,使得k2失去平衡,因此需要在k2处单旋转
static Position SingleRotateWithLeft(Position k2) {
Position k1;
k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k2->height = Max(HeightAvlTree(k2->left), HeightAvlTree(k2->right)) + 1;
k1->height = Max(HeightAvlTree(k1->left), HeightAvlTree(k1->right)) + 1;
return k1;
}
//右-右插入,使得k1失去平衡,因此需要在k1处单旋转
static Position SigleRotateWithRight(Position k1) {
Position k2;
k2 = k1->right;
k1->right = k2->left;
k2->left = k1;
k1->height = Max(HeightAvlTree(k1->left), HeightAvlTree(k1->right)) + 1;
k2->height = Max(HeightAvlTree(k2->left), HeightAvlTree(k2->right)) + 1;
return k2;
}
//左-右插入,使得k3失去平衡,因此在k3处双旋转
//双旋转其实是两次单旋转操作
//先对k3的左子树进行一次右-右单旋转操作
//然后对k3进行一次左-左单旋转操作
static Position DoubleRotateWithLeft1(Position k3) { //双旋转,递归
k3->left = SigleRotateWithRight(k3->left);
return SingleRotateWithLeft(k3);
}
static Position DoubleRotateWithLeft2(Position k3) {
Position k1, k2;
k1 = k3->left;
k2 = k1->right;
k1->right = k2->left;
k2->left = k1;
k3->left = k2->right;
k2->right = k3;
k1->height = Max(HeightAvlTree(k1->left), HeightAvlTree(k1->right)) + 1;
k3->height = Max(HeightAvlTree(k3->left), HeightAvlTree(k3->right)) + 1;
k2->height = Max(k1->height, k3->height) + 1;
return k2;
}
//右-左插入,使得k1失去平衡,因此在k1处双旋转
//双旋转其实是两次单旋转操作
//先对k1的右子树进行一次左-左单旋转操作
//然后对k1进行一次右-右单旋转操作
static Position DoubleRotateWithRight(Position k1) {
k1->right = SingleRotateWithLeft(k1->right);
return SigleRotateWithRight(k1);
}
AvlTree InsertToAvlTree(ElementType x, AvlTree avltree) {
if (avltree == NULL) { //如果树为空,分配空间,插入节点
avltree = (struct AvlNode*)malloc(sizeof(struct AvlNode));
if (avltree == NULL) {
cout << "malloc failed." << endl;
}
else {
avltree->element = x;
avltree->left = avltree->right = NULL;
}
}
//插入值小于根节点的值,在左子树插入节点
else if (x < avltree->element) {
avltree->left = InsertToAvlTree(x, avltree->left);
//树失去了平衡,对树进行调整,这几个调整平衡的语句可以封装下
if (HeightAvlTree(avltree->left) - HeightAvlTree(avltree->right) == 2) {
if (x < avltree->left->element) //左-左,进行左单旋转
avltree = SingleRotateWithLeft(avltree);
else //左-右,双旋转
avltree = DoubleRotateWithLeft1(avltree);
}
}
//插入值大于根节点的值,在右子树插入节点
else if (x > avltree->element) {
avltree->right = InsertToAvlTree(x, avltree->right);
//树失去了平衡,对树进行调整,这几个调整平衡的语句可以封装下
if (HeightAvlTree(avltree->right) - HeightAvlTree(avltree->left) == 2) {
if (x > avltree->right->element)
avltree = SigleRotateWithRight(avltree); //右-右,单旋转
else //右-左,双旋转
avltree = DoubleRotateWithRight(avltree);
}
}
avltree->height = Max(HeightAvlTree(avltree->left), HeightAvlTree(avltree->right)) + 1;
return avltree;
}
//删除操作类似于二叉树的操作,只是需要将树调整平衡
AvlTree DeleteFromAvlTree(ElementType x, AvlTree avltree) {
Position temp;
if (avltree == NULL)
return NULL;
//在左子树寻找删除位置,删除后可能导致左子树高度变小,可能要调整树
if (x < avltree->element) {
avltree->left = DeleteFromAvlTree(x, avltree->left);
//如果右子树高度比左子树高度超过1,那么需要将树调整平衡,这几个调整平衡的语句可以封装下
if (2 == (HeightAvlTree(avltree->right) - HeightAvlTree(avltree->left))) {
//如果是右-左型,则要进行左单旋、右单旋;即进行如下双旋操作
//否则为右-右型,需要进行左单旋操作
if (HeightAvlTree(avltree->right->left) > HeightAvlTree(avltree->right->right))
avltree = DoubleRotateWithRight(avltree);
else
avltree = SigleRotateWithRight(avltree);
}
}
//在右子树寻找删除位置,删除后可能导致右子树高度变小,可能要调整树
else if (x > avltree->element) {
avltree->right = DeleteFromAvlTree(x, avltree->right);
//这几个调整平衡的语句可以封装下
if (2 == (HeightAvlTree(avltree->left) - HeightAvlTree(avltree->right))) {
if (HeightAvlTree(avltree->left->right) > HeightAvlTree(avltree->left->left))
avltree = DoubleRotateWithLeft1(avltree);
else
avltree = SingleRotateWithLeft(avltree);
}
}
//找到要删除的元素,该节点有两个孩子
//那么将节点的值用右子树中最小的值A替换,然后在右子树中删除A
else if (avltree->left && avltree->right){
avltree->element = (FindMinFromAvlTree(avltree->right))->element;
avltree->right = DeleteFromAvlTree(avltree->element, avltree->right);
}
//找到要删除的节点,该节点为叶子节点或仅有一个孩子
else {
temp = avltree;
if (avltree->left == NULL) //当节点只有右孩子或为叶节点时
avltree = avltree->right;
else if (avltree->right == NULL) //当节点只有左孩子时
avltree = avltree->left;
free(temp);
}
if (avltree)
avltree->height = Max(HeightAvlTree(avltree->right), HeightAvlTree(avltree->left)) + 1;
return avltree;
}
void VisitElement(AvlTree tree) {
cout << tree->element << " ";
}
//先序遍历树
void PreOrderTraversal(AvlTree tree) {
if (tree == NULL)
return;
VisitElement(tree);
PreOrderTraversal(tree->left);
PreOrderTraversal(tree->right);
}
//中序遍历树
void InOrderTraversal(AvlTree tree) {
if (tree == NULL)
return;
InOrderTraversal(tree->left);
VisitElement(tree);
InOrderTraversal(tree->right);
}
int main() {
AvlTree tree = NULL;
tree = MakeEmptyAvlTree(tree);
tree = InsertToAvlTree(1, tree);
tree = InsertToAvlTree(3, tree);
tree = InsertToAvlTree(5, tree);
tree = InsertToAvlTree(122, tree);
tree = InsertToAvlTree(7, tree);
tree = InsertToAvlTree(9, tree);
tree = InsertToAvlTree(11, tree);
tree = InsertToAvlTree(21, tree);
Position min = FindMinFromAvlTree(tree);;
cout << "删除前,树高:" << HeightAvlTree(tree) << endl;
cout << endl << "删除前,先序遍历:" << endl;
PreOrderTraversal(tree);
cout << endl << "删除前,中序遍历:" << endl;
InOrderTraversal(tree);
DeleteFromAvlTree(7, tree);
cout << endl;
cout << "删除后,树高:" << HeightAvlTree(tree) << endl;
cout << endl << "删除后,先序遍历:" << endl;
PreOrderTraversal(tree);
cout << endl << "删除后,中序遍历:" << endl;
InOrderTraversal(tree);
}
~~~
~~~
//3avl_tree.h
typedef int ElementType;
#ifndef TEST_AVL_TREE_H
#define TEST_AVL_TREE_H
struct AvlNode;
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree;
struct AvlNode {
ElementType element;
AvlTree left;
AvlTree right;
int height;
};
AvlTree MakeEmptyAvlTree(AvlTree avltree);
Position FindAvlTree(ElementType x, AvlTree avltree);
Position FindMinFromAvlTree(AvlTree avltree);
Position FindMaxFromAvlTree(AvlTree avltree);
AvlTree InsertToAvlTree(ElementType x, AvlTree avltree);
AvlTree DeleteFromAvlTree(ElementType x, AvlTree avltree);
ElementType RetrieveAvlTree(Position pos);
#endif
~~~
程序执行结果:
![](https://box.kancloud.cn/2016-06-07_575683a4cb038.jpg)
# [Avl的C++实现](http://blog.csdn.net/u013074465/article/details/44748497)
- 前言
- Josephus约瑟夫问题及其变种
- 链表的常见实现
- 二叉树遍历、插入、删除等常见操作
- 二叉堆的插入删除等操作C++实现
- 插入排序和希尔排序
- 堆排序
- 归并排序及其空间复杂度的思考
- 快速排序的几种常见实现及其性能对比
- 红黑树操作及实现
- 整数的二进制表示中1的个数
- 位操作实现加减乘除四则运算
- 冒泡排序的改进
- 直接选择排序
- 不借助变量交换两个数
- 基础排序算法总结
- AVL树(Adelson-Velskii-Landis tree)
- avl树的C++实现
- 动态规划之钢条分割
- hash函数的基本知识
- 动态规划:求最长公共子串/最长公共子序列
- 最长递增子序列
- 称砝码问题
- 汽水瓶
- 字符串合并处理(二进制位的倒序)
- 动态规划:计算字符串相似度
- m个苹果放入n个盘子
- 生成k个小于n的互不相同的随机数
- 栈和队列的相互模拟
- 字符串的排列/组合
- KMP(Knuth-Morris-Pratt)算法
- n个骰子的点数
- 位运算的常见操作和题目