### 1. 属性的简洁表示法
ES6 允许直接写入变量和函数,作为对象的属性和方法。这样的书写更加简洁。
~~~
const foo = 'bar';
const baz = {foo};
baz // {foo: "bar"}
// 等同于
const baz = {foo: foo};
~~~
上面代码表明,ES6 允许在对象之中,直接写变量。这时,属性名为变量名, 属性值为变量的值。下面是另一个例子。
~~~
function f(x, y) {
return {x, y};
}
// 等同于
function f(x, y) {
return {x: x, y: y};
}
f(1, 2) // Object {x: 1, y: 2}
~~~
除了属性简写,方法也可以简写。
~~~
const o = {
method() {
return "Hello!";
}
};
// 等同于
const o = {
method: function() {
return "Hello!";
}
};
~~~
下面是一个实际的例子。
~~~
let birth = '2000/01/01';
const Person = {
name: '张三',
//等同于birth: birth
birth,
// 等同于hello: function ()...
hello() { console.log('我的名字是', this.name); }
};
~~~
这种写法用于函数的返回值,将会非常方便。
~~~
function getPoint() {
const x = 1;
const y = 10;
return {x, y};
}
getPoint()
// {x:1, y:10}
~~~
CommonJS 模块输出一组变量,就非常合适使用简洁写法。
~~~
let ms = {};
function getItem (key) {
return key in ms ? ms[key] : null;
}
function setItem (key, value) {
ms[key] = value;
}
function clear () {
ms = {};
}
module.exports = { getItem, setItem, clear };
// 等同于
module.exports = {
getItem: getItem,
setItem: setItem,
clear: clear
};
~~~
属性的赋值器(setter)和取值器(getter),事实上也是采用这种写法。
~~~
const cart = {
_wheels: 4,
get wheels () {
return this._wheels;
},
set wheels (value) {
if (value < this._wheels) {
throw new Error('数值太小了!');
}
this._wheels = value;
}
}
~~~
注意,简洁写法的属性名总是字符串,这会导致一些看上去比较奇怪的结果。
~~~
const obj = {
class () {}
};
// 等同于
var obj = {
'class': function() {}
};
~~~
上面代码中,class是字符串,所以不会因为它属于关键字,而导致语法解析报错。
如果某个方法的值是一个 Generator 函数,前面需要加上星号。
~~~
const obj = {
* m() {
yield 'hello world';
}
};
~~~
### 2. 属性名表达式
JavaScript 定义对象的属性,有两种方法。
~~~
// 方法一
obj.foo = true;
// 方法二
obj['a' + 'bc'] = 123;
~~~
上面代码的方法一是直接用标识符作为属性名,方法二是用表达式作为属性名,这时要将表达式放在方括号之内。
但是,如果使用字面量方式定义对象(使用大括号),在 ES5 中只能使用方法一(标识符)定义属性。
~~~
var obj = {
foo: true,
abc: 123
};
~~~
ES6 允许字面量定义对象时,用方法二(表达式)作为对象的属性名,即把表达式放在方括号内。
~~~
let propKey = 'foo';
let obj = {
[propKey]: true,
['a' + 'bc']: 123
};
~~~
下面是另一个例子。
~~~
let lastWord = 'last word';
const a = {
'first word': 'hello',
[lastWord]: 'world'
};
a['first word'] // "hello"
a[lastWord] // "world"
a['last word'] // "world"
~~~
表达式还可以用于定义方法名。
~~~
let obj = {
['h' + 'ello']() {
return 'hi';
}
};
obj.hello() // hi
~~~
注意,属性名表达式与简洁表示法,不能同时使用,会报错。
~~~
// 报错
const foo = 'bar';
const bar = 'abc';
const baz = { [foo] };
// 正确
const foo = 'bar';
const baz = { [foo]: 'abc'};
~~~
注意,属性名表达式如果是一个对象,默认情况下会自动将对象转为字符串[object Object],这一点要特别小心。
~~~
const keyA = {a: 1};
const keyB = {b: 2};
const myObject = {
[keyA]: 'valueA',
[keyB]: 'valueB'
};
myObject // Object {[object Object]: "valueB"}
~~~
~~~
上面代码中,[keyA]和[keyB]得到的都是[object Object],所以[keyB]会把[keyA]覆盖掉,
而myObject最后只有一个[object Object]属性。
~~~
### 3. 方法的 name 属性
函数的name属性,返回函数名。对象方法也是函数,因此也有name属性。
~~~
const person = {
sayName() {
console.log('hello!');
},
};
person.sayName.name // "sayName"
~~~
上面代码中,方法的name属性返回函数名(即方法名)。
如果对象的方法使用了取值函数(getter)和存值函数(setter),则name属性不是在该方法上面,而是该方法的属性的描述对象的get和set属性上面,返回值是方法名前加上get和set。
~~~
const obj = {
get foo() {},
set foo(x) {}
};
obj.foo.name
// TypeError: Cannot read property 'name' of undefined
const descriptor = Object.getOwnPropertyDescriptor(obj, 'foo');
descriptor.get.name // "get foo"
descriptor.set.name // "set foo"
~~~
有两种特殊情况:bind方法创造的函数,name属性返回bound加上原函数的名字;Function构造函数创造的函数,name属性返回anonymous。
~~~
(new Function()).name // "anonymous"
var doSomething = function() {
// ...
};
doSomething.bind().name // "bound doSomething"
~~~
如果对象的方法是一个 Symbol 值,那么name属性返回的是这个 Symbol 值的描述。
~~~
const key1 = Symbol('description');
const key2 = Symbol();
let obj = {
[key1]() {},
[key2]() {},
};
obj[key1].name // "[description]"
obj[key2].name // ""
~~~
上面代码中,key1对应的 Symbol 值有描述,key2没有。
### 4. Object.is()
ES5 比较两个值是否相等,只有两个运算符:相等运算符(==)和严格相等运算符(===)。它们都有缺点,前者会自动转换数据类型,后者的NaN不等于自身,以及+0等于-0。JavaScript 缺乏一种运算,在所有环境中,只要两个值是一样的,它们就应该相等。
ES6 提出“Same-value equality”(同值相等)算法,用来解决这个问题。Object.is就是部署这个算法的新方法。
** 它用来比较两个值是否严格相等 **
与严格比较运算符(===)的行为基本一致。
~~~
Object.is('foo', 'foo')
// true
Object.is({}, {})
// false
~~~
不同之处只有两个:一是+0不等于-0,二是NaN等于自身。
~~~
+0 === -0 //true
NaN === NaN // false
Object.is(+0, -0) // false
Object.is(NaN, NaN) // true
~~~
ES5 可以通过下面的代码, 部署Object.is。
~~~
Object.defineProperty(Object, 'is', {
value: function(x, y) {
if (x === y) {
// 针对+0 不等于 -0的情况
return x !== 0 || 1 / x === 1 / y;
}
// 针对NaN的情况
return x !== x && y !== y;
},
configurable: true,
enumerable: false,
writable: true
});
~~~
### 5. Object.assign()
基本用法
Object.assign方法用于对象的合并,将源对象(source)的所有可枚举属性,复制到目标对象(target)。
~~~
const target = { a: 1 };
const source1 = { b: 2 };
const source2 = { c: 3 };
Object.assign(target, source1, source2);
target // {a:1, b:2, c:3}
~~~
**Object.assign方法的第一个参数是目标对象,后面的参数都是源对象。**
> 注意,如果目标对象与源对象有同名属性,或多个源对象有同名属性,则后面的属性会覆盖前面的属性。
~~~
const target = { a: 1, b: 1 };
const source1 = { b: 2, c: 2 };
const source2 = { c: 3 };
Object.assign(target, source1, source2);
target // {a:1, b:2, c:3}
~~~
如果只有一个参数,Object.assign会直接返回该参数。
~~~
const obj = {a: 1};
Object.assign(obj) === obj // true
~~~
> 如果该参数不是对象,则会先转成对象,然后返回。
`typeof Object.assign(2) // "object"`
由于undefined和null无法转成对象,所以如果它们作为参数,就会报错。
~~~
Object.assign(undefined) // 报错
Object.assign(null) // 报错
~~~
> 如果非对象参数出现在源对象的位置(即非首参数),那么处理规则有所不同。首先,这些参数都会转成对象,如果无法转成对象,就会跳过。这意味着,如果undefined和null不在首参数,就不会报错。
~~~
let obj = {a: 1};
Object.assign(obj, undefined) === obj // true
Object.assign(obj, null) === obj // true
~~~
其他类型的值(即数值、字符串和布尔值)不在首参数,也不会报错。但是,除了字符串会以数组形式,拷贝入目标对象,其他值都不会产生效果。
~~~
const v1 = 'abc';
const v2 = true;
const v3 = 10;
const obj = Object.assign({}, v1, v2, v3);
console.log(obj); // { "0": "a", "1": "b", "2": "c" }
~~~
上面代码中,v1、v2、v3分别是字符串、布尔值和数值,结果只有字符串合入目标对象(以字符数组的形式),数值和布尔值都会被忽略。这是因为只有字符串的包装对象,会产生可枚举属性。
~~~
Object(true) // {[[PrimitiveValue]]: true}
Object(10) // {[[PrimitiveValue]]: 10}
Object('abc') // {0: "a", 1: "b", 2: "c", length: 3, [[PrimitiveValue]]: "abc"}
~~~
上面代码中,布尔值、数值、字符串分别转成对应的包装对象,可以看到它们的原始值都在包装对象的内部属性[[PrimitiveValue]]上面,这个属性是不会被Object.assign拷贝的。只有字符串的包装对象,会产生可枚举的实义属性,那些属性则会被拷贝。
Object.assign拷贝的属性是有限制的,只拷贝源对象的自身属性(不拷贝继承属性),也不拷贝不可枚举的属性(enumerable: false)。
~~~
Object.assign({b: 'c'},
Object.defineProperty({}, 'invisible', {
enumerable: false,
value: 'hello'
})
)
// { b: 'c' }
~~~
上面代码中,Object.assign要拷贝的对象只有一个不可枚举属性invisible,这个属性并没有被拷贝进去。
属性名为 Symbol 值的属性,也会被Object.assign拷贝。
~~~
Object.assign({ a: 'b' }, { [Symbol('c')]: 'd' })
// { a: 'b', Symbol(c): 'd' }
~~~
* 注意点
(1)浅拷贝
Object.assign方法实行的是浅拷贝,而不是深拷贝。也就是说,如果源对象某个属性的值是对象,那么目标对象拷贝得到的是这个对象的引用。
~~~
const obj1 = {a: {b: 1}};
const obj2 = Object.assign({}, obj1);
obj1.a.b = 2;
obj2.a.b // 2
~~~
上面代码中,源对象obj1的a属性的值是一个对象,Object.assign拷贝得到的是这个对象的引用。这个对象的任何变化,都会反映到目标对象上面。
(2)同名属性的替换
对于这种嵌套的对象,一旦遇到同名属性,Object.assign的处理方法是替换,而不是添加。
~~~
const target = { a: { b: 'c', d: 'e' } }
const source = { a: { b: 'hello' } }
Object.assign(target, source)
// { a: { b: 'hello' } }
~~~
上面代码中,target对象的a属性被source对象的a属性整个替换掉了,而不会得到{ a: { b: 'hello', d: 'e' } }的结果。这通常不是开发者想要的,需要特别小心。
一些函数库提供Object.assign的定制版本(比如 Lodash 的_.defaultsDeep方法),可以得到深拷贝的合并。
(3)数组的处理
Object.assign可以用来处理数组,但是会把数组视为对象。
~~~
Object.assign([1, 2, 3], [4, 5])
// [4, 5, 3]
~~~
上面代码中,Object.assign把数组视为属性名为 0、1、2 的对象,因此源数组的 0 号属性4覆盖了目标数组的 0 号属性1。
(4)取值函数的处理
Object.assign只能进行值的复制,如果要复制的值是一个取值函数,那么将求值后再复制。
~~~
const source = {
get foo() { return 1 }
};
const target = {};
Object.assign(target, source)
// { foo: 1 }
~~~
上面代码中,source对象的foo属性是一个取值函数,Object.assign不会复制这个取值函数,只会拿到值以后,将这个值复制过去。
常见用途
Object.assign方法有很多用处。
(1)为对象添加属性
~~~
class Point {
constructor(x, y) {
Object.assign(this, {x, y});
}
}
~~~
上面方法通过Object.assign方法,将x属性和y属性添加到Point类的对象实例。
(2)为对象添加方法
~~~
Object.assign(SomeClass.prototype, {
someMethod(arg1, arg2) {
···
},
anotherMethod() {
···
}
});
// 等同于下面的写法
SomeClass.prototype.someMethod = function (arg1, arg2) {
···
};
SomeClass.prototype.anotherMethod = function () {
···
};
~~~
上面代码使用了对象属性的简洁表示法,直接将两个函数放在大括号中,再使用assign方法添加到SomeClass.prototype之中。
(3)克隆对象
~~~
function clone(origin) {
return Object.assign({}, origin);
}
~~~
上面代码将原始对象拷贝到一个空对象,就得到了原始对象的克隆。
不过,采用这种方法克隆,只能克隆原始对象自身的值,不能克隆它继承的值。如果想要保持继承链,可以采用下面的代码。
~~~
function clone(origin) {
let originProto = Object.getPrototypeOf(origin);
return Object.assign(Object.create(originProto), origin);
}
~~~
(4)合并多个对象
将多个对象合并到某个对象。
~~~
const merge =
(target, ...sources) => Object.assign(target, ...sources);
~~~
如果希望合并后返回一个新对象,可以改写上面函数,对一个空对象合并。
~~~
const merge =
(...sources) => Object.assign({}, ...sources);
~~~
(5)为属性指定默认值
~~~
const DEFAULTS = {
logLevel: 0,
outputFormat: 'html'
};
function processContent(options) {
options = Object.assign({}, DEFAULTS, options);
console.log(options);
// ...
}
~~~
上面代码中,DEFAULTS对象是默认值,options对象是用户提供的参数。Object.assign方法将DEFAULTS和options合并成一个新对象,如果两者有同名属性,则option的属性值会覆盖DEFAULTS的属性值。
注意,由于存在浅拷贝的问题,DEFAULTS对象和options对象的所有属性的值,最好都是简单类型,不要指向另一个对象。否则,DEFAULTS对象的该属性很可能不起作用。
~~~
const DEFAULTS = {
url: {
host: 'example.com',
port: 7070
},
};
processContent({ url: {port: 8000} })
// {
// url: {port: 8000}
// }
~~~
上面代码的原意是将url.port改成 8000,url.host不变。实际结果却是options.url覆盖掉DEFAULTS.url,所以url.host就不存在了。
### 6. 属性的可枚举性和遍历
可枚举性
对象的每个属性都有一个描述对象(Descriptor),用来控制该属性的行为。Object.getOwnPropertyDescriptor方法可以获取该属性的描述对象。
~~~
let obj = { foo: 123 };
Object.getOwnPropertyDescriptor(obj, 'foo')
// {
// value: 123,
// writable: true,
// enumerable: true,
// configurable: true
// }
~~~
描述对象的enumerable属性,称为”可枚举性“,如果该属性为false,就表示某些操作会忽略当前属性。
* 目前,有四个操作会忽略enumerable为false的属性。
> for...in循环:只遍历对象自身的和继承的可枚举的属性。
> Object.keys():返回对象自身的所有可枚举的属性的键名。
> JSON.stringify():只串行化对象自身的可枚举的属性。
> Object.assign(): 忽略enumerable为false的属性,只拷贝对象自身的可枚举的属性。
这四个操作之中,前三个是 ES5 就有的,最后一个Object.assign()是 ES6 新增的。其中,只有for...in会返回继承的属性,其他三个方法都会忽略继承的属性,只处理对象自身的属性。实际上,引入“可枚举”(enumerable)这个概念的最初目的,就是让某些属性可以规避掉for...in操作,不然所有内部属性和方法都会被遍历到。比如,对象原型的toString方法,以及数组的length属性,就通过“可枚举性”,从而避免被for...in遍历到。
~~~
Object.getOwnPropertyDescriptor(Object.prototype, 'toString').enumerable
// false
Object.getOwnPropertyDescriptor([], 'length').enumerable
// false
~~~
上面代码中,toString和length属性的enumerable都是false,因此for...in不会遍历到这两个继承自原型的属性。
另外,ES6 规定,所有 Class 的原型的方法都是不可枚举的。
~~~
Object.getOwnPropertyDescriptor(class {foo() {}}.prototype, 'foo').enumerable
// false
~~~
总的来说,操作中引入继承的属性会让问题复杂化,大多数时候,我们只关心对象自身的属性。所以,尽量不要用for...in循环,而用Object.keys()代替。
### 7. 属性的遍历
ES6 一共有 5 种方法可以遍历对象的属性。
* (1)`for...in`
for...in循环遍历对象自身的和继承的可枚举属性(不含 Symbol 属性)。
* (2)`Object.keys(obj)`
Object.keys返回一个数组,包括对象自身的(不含继承的)所有可枚举属性(不含 Symbol 属性)的键名。
* (3)`Object.getOwnPropertyNames(obj)`
Object.getOwnPropertyNames返回一个数组,包含对象自身的所有属性(不含 Symbol 属性,但是包括不可枚举属性)的键名。
* (4)`Object.getOwnPropertySymbols(obj)`
Object.getOwnPropertySymbols返回一个数组,包含对象自身的所有 Symbol 属性的键名。
* (5)`Reflect.ownKeys(obj)`
Reflect.ownKeys返回一个数组,包含对象自身的所有键名,不管键名是 Symbol 或字符串,也不管是否可枚举。
以上的 5 种方法遍历对象的键名,都遵守同样的属性遍历的次序规则。
首先遍历所有数值键,按照数值升序排列。
其次遍历所有字符串键,按照加入时间升序排列。
最后遍历所有 Symbol 键,按照加入时间升序排列。
~~~
Reflect.ownKeys({ [Symbol()]:0, b:0, 10:0, 2:0, a:0 })
// ['2', '10', 'b', 'a', Symbol()]
~~~
上面代码中,Reflect.ownKeys方法返回一个数组,包含了参数对象的所有属性。这个数组的属性次序是这样的,首先是数值属性2和10,其次是字符串属性b和a,最后是 Symbol 属性。
### 8. `Object.getOwnPropertyDescriptors()`
前面说过,Object.getOwnPropertyDescriptor方法会返回某个对象属性的描述对象(descriptor)。ES2017 引入了Object.getOwnPropertyDescriptors方法,返回指定对象所有自身属性(非继承属性)的描述对象。
~~~
const obj = {
foo: 123,
get bar() { return 'abc' }
};
Object.getOwnPropertyDescriptors(obj)
// { foo:
// { value: 123,
// writable: true,
// enumerable: true,
// configurable: true },
// bar:
// { get: [Function: get bar],
// set: undefined,
// enumerable: true,
// configurable: true } }
~~~
上面代码中,Object.getOwnPropertyDescriptors方法返回一个对象,所有原对象的属性名都是该对象的属性名,对应的属性值就是该属性的描述对象。
该方法的实现非常容易。
~~~
function getOwnPropertyDescriptors(obj) {
const result = {};
for (let key of Reflect.ownKeys(obj)) {
result[key] = Object.getOwnPropertyDescriptor(obj, key);
}
return result;
}
~~~
该方法的引入目的,主要是为了解决Object.assign()无法正确拷贝get属性和set属性的问题。
~~~
const source = {
set foo(value) {
console.log(value);
}
};
const target1 = {};
Object.assign(target1, source);
Object.getOwnPropertyDescriptor(target1, 'foo')
// { value: undefined,
// writable: true,
// enumerable: true,
// configurable: true }
~~~
上面代码中,source对象的foo属性的值是一个赋值函数,Object.assign方法将这个属性拷贝给target1对象,结果该属性的值变成了undefined。这是因为Object.assign方法总是拷贝一个属性的值,而不会拷贝它背后的赋值方法或取值方法。
这时,Object.getOwnPropertyDescriptors方法配合Object.defineProperties方法,就可以实现正确拷贝。
~~~
const source = {
set foo(value) {
console.log(value);
}
};
const target2 = {};
Object.defineProperties(target2, Object.getOwnPropertyDescriptors(source));
Object.getOwnPropertyDescriptor(target2, 'foo')
// { get: undefined,
// set: [Function: set foo],
// enumerable: true,
// configurable: true }
~~~
上面代码中,两个对象合并的逻辑可以写成一个函数。
~~~
const shallowMerge = (target, source) => Object.defineProperties(
target,
Object.getOwnPropertyDescriptors(source)
);
~~~
Object.getOwnPropertyDescriptors方法的另一个用处,是配合Object.create方法,将对象属性克隆到一个新对象。这属于浅拷贝。
~~~
const clone = Object.create(Object.getPrototypeOf(obj),
Object.getOwnPropertyDescriptors(obj));
// 或者
const shallowClone = (obj) => Object.create(
Object.getPrototypeOf(obj),
Object.getOwnPropertyDescriptors(obj)
);
~~~
上面代码会克隆对象obj。
另外,Object.getOwnPropertyDescriptors方法可以实现一个对象继承另一个对象。以前,继承另一个对象,常常写成下面这样。
~~~
const obj = {
__proto__: prot,
foo: 123,
};
~~~
ES6 规定__proto__只有浏览器要部署,其他环境不用部署。如果去除__proto__,上面代码就要改成下面这样。
~~~
const obj = Object.create(prot);
obj.foo = 123;
// 或者
const obj = Object.assign(
Object.create(prot),
{
foo: 123,
}
);
~~~
有了Object.getOwnPropertyDescriptors,我们就有了另一种写法。
~~~
const obj = Object.create(
prot,
Object.getOwnPropertyDescriptors({
foo: 123,
})
);
Object.getOwnPropertyDescriptors也可以用来实现 Mixin(混入)模式。
let mix = (object) => ({
with: (...mixins) => mixins.reduce(
(c, mixin) => Object.create(
c, Object.getOwnPropertyDescriptors(mixin)
), object)
});
// multiple mixins example
let a = {a: 'a'};
let b = {b: 'b'};
let c = {c: 'c'};
let d = mix(c).with(a, b);
d.c // "c"
d.b // "b"
d.a // "a"
~~~
上面代码返回一个新的对象d,代表了对象a和b被混入了对象c的操作。
出于完整性的考虑,Object.getOwnPropertyDescriptors进入标准以后,以后还会新增Reflect.getOwnPropertyDescriptors方法。
__proto__属性,Object.setPrototypeOf(),Object.getPrototypeOf()
JavaScript 语言的对象继承是通过原型链实现的。ES6 提供了更多原型对象的操作方法。
__proto__属性
__proto__属性(前后各两个下划线),用来读取或设置当前对象的prototype对象。目前,所有浏览器(包括 IE11)都部署了这个属性。
// es5 的写法
~~~
const obj = {
method: function() { ... }
};
obj.__proto__ = someOtherObj;
// es6 的写法
var obj = Object.create(someOtherObj);
obj.method = function() { ... };
~~~
该属性没有写入 ES6 的正文,而是写入了附录,原因是__proto__前后的双下划线,说明它本质上是一个内部属性,而不是一个正式的对外的 API,只是由于浏览器广泛支持,才被加入了 ES6。标准明确规定,只有浏览器必须部署这个属性,其他运行环境不一定需要部署,而且新的代码最好认为这个属性是不存在的。因此,无论从语义的角度,还是从兼容性的角度,都不要使用这个属性,而是使用下面的Object.setPrototypeOf()(写操作)、Object.getPrototypeOf()(读操作)、Object.create()(生成操作)代替。
实现上,__proto__调用的是Object.prototype.__proto__,具体实现如下。
~~~
Object.defineProperty(Object.prototype, '__proto__', {
get() {
let _thisObj = Object(this);
return Object.getPrototypeOf(_thisObj);
},
set(proto) {
if (this === undefined || this === null) {
throw new TypeError();
}
if (!isObject(this)) {
return undefined;
}
if (!isObject(proto)) {
return undefined;
}
let status = Reflect.setPrototypeOf(this, proto);
if (!status) {
throw new TypeError();
}
},
});
function isObject(value) {
return Object(value) === value;
}
~~~
如果一个对象本身部署了__proto__属性,该属性的值就是对象的原型。
~~~
Object.getPrototypeOf({ __proto__: null })
// null
~~~
### 9. Object.setPrototypeOf()
Object.setPrototypeOf方法的作用与__proto__相同,用来设置一个对象的prototype对象,返回参数对象本身。它是 ES6 正式推荐的设置原型对象的方法。
~~~
// 格式
Object.setPrototypeOf(object, prototype)
// 用法
const o = Object.setPrototypeOf({}, null);
~~~
该方法等同于下面的函数。
~~~
function (obj, proto) {
obj.__proto__ = proto;
return obj;
}
~~~
下面是一个例子。
~~~
let proto = {};
let obj = { x: 10 };
Object.setPrototypeOf(obj, proto);
proto.y = 20;
proto.z = 40;
obj.x // 10
obj.y // 20
obj.z // 40
~~~
上面代码将proto对象设为obj对象的原型,所以从obj对象可以读取proto对象的属性。
如果第一个参数不是对象,会自动转为对象。但是由于返回的还是第一个参数,所以这个操作不会产生任何效果。
~~~
Object.setPrototypeOf(1, {}) === 1 // true
Object.setPrototypeOf('foo', {}) === 'foo' // true
Object.setPrototypeOf(true, {}) === true // true
~~~
由于undefined和null无法转为对象,所以如果第一个参数是undefined或null,就会报错。
~~~
Object.setPrototypeOf(undefined, {})
// TypeError: Object.setPrototypeOf called on null or undefined
Object.setPrototypeOf(null, {})
// TypeError: Object.setPrototypeOf called on null or undefined
~~~
### 10. Object.getPrototypeOf()
该方法与Object.setPrototypeOf方法配套,用于读取一个对象的原型对象。
Object.getPrototypeOf(obj);
下面是一个例子。
~~~
function Rectangle() {
// ...
}
const rec = new Rectangle();
Object.getPrototypeOf(rec) === Rectangle.prototype
// true
Object.setPrototypeOf(rec, Object.prototype);
Object.getPrototypeOf(rec) === Rectangle.prototype
// false
~~~
如果参数不是对象,会被自动转为对象。
~~~
// 等同于 Object.getPrototypeOf(Number(1))
Object.getPrototypeOf(1)
// Number {[[PrimitiveValue]]: 0}
// 等同于 Object.getPrototypeOf(String('foo'))
Object.getPrototypeOf('foo')
// String {length: 0, [[PrimitiveValue]]: ""}
// 等同于 Object.getPrototypeOf(Boolean(true))
Object.getPrototypeOf(true)
// Boolean {[[PrimitiveValue]]: false}
Object.getPrototypeOf(1) === Number.prototype // true
Object.getPrototypeOf('foo') === String.prototype // true
Object.getPrototypeOf(true) === Boolean.prototype // true
如果参数是undefined或null,它们无法转为对象,所以会报错。
Object.getPrototypeOf(null)
// TypeError: Cannot convert undefined or null to object
Object.getPrototypeOf(undefined)
// TypeError: Cannot convert undefined or null to object
~~~
### 11. super 关键字
> 我们知道,this关键字总是指向函数所在的当前对象,ES6 又新增了另一个类似的关键字super,指向当前对象的原型对象。
~~~
const proto = {
foo: 'hello'
};
const obj = {
foo: 'world',
find() {
return super.foo;
}
};
Object.setPrototypeOf(obj, proto);
obj.find() // "hello"
~~~
上面代码中,对象obj的find方法之中,通过super.foo引用了原型对象proto的foo属性。
> 注意,super关键字表示原型对象时,只能用在对象的方法之中,用在其他地方都会报错。
~~~
// 报错
const obj = {
foo: super.foo
}
// 报错
const obj = {
foo: () => super.foo
}
// 报错
const obj = {
foo: function () {
return super.foo
}
}
~~~
上面三种super的用法都会报错,因为对于 JavaScript 引擎来说,这里的super都没有用在对象的方法之中。第一种写法是super用在属性里面,第二种和第三种写法是super用在一个函数里面,然后赋值给foo属性。目前,只有对象方法的简写法可以让 JavaScript 引擎确认,定义的是对象的方法。
JavaScript 引擎内部,super.foo等同于Object.getPrototypeOf(this).foo(属性)或Object.getPrototypeOf(this).foo.call(this)(方法)。
~~~
const proto = {
x: 'hello',
foo() {
console.log(this.x);
},
};
const obj = {
x: 'world',
foo() {
super.foo();
}
}
Object.setPrototypeOf(obj, proto);
obj.foo() // "world"
~~~
上面代码中,super.foo指向原型对象proto的foo方法,但是绑定的this却还是当前对象obj,因此输出的就是world。
### 12. Object.keys(),Object.values(),Object.entries()
* Object.keys()
ES5 引入了Object.keys方法,返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键名。
var obj = { foo: 'bar', baz: 42 };
Object.keys(obj)
// ["foo", "baz"]
ES2017 引入了跟Object.keys配套的Object.values和Object.entries,作为遍历一个对象的补充手段,供for...of循环使用。
~~~
let {keys, values, entries} = Object;
let obj = { a: 1, b: 2, c: 3 };
for (let key of keys(obj)) {
console.log(key); // 'a', 'b', 'c'
}
for (let value of values(obj)) {
console.log(value); // 1, 2, 3
}
for (let [key, value] of entries(obj)) {
console.log([key, value]); // ['a', 1], ['b', 2], ['c', 3]
}
~~~
* Object.values()
Object.values方法返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键值。
~~~
const obj = { foo: 'bar', baz: 42 };
Object.values(obj)
// ["bar", 42]
~~~
返回数组的成员顺序,与本章的《属性的遍历》部分介绍的排列规则一致。
~~~
const obj = { 100: 'a', 2: 'b', 7: 'c' };
Object.values(obj)
// ["b", "c", "a"]
~~~
上面代码中,属性名为数值的属性,是按照数值大小,从小到大遍历的,因此返回的顺序是b、c、a。
Object.values只返回对象自身的可遍历属性。
~~~
const obj = Object.create({}, {p: {value: 42}});
Object.values(obj) // []
~~~
上面代码中,Object.create方法的第二个参数添加的对象属性(属性p),如果不显式声明,默认是不可遍历的,因为p的属性描述对象的enumerable默认是false,Object.values不会返回这个属性。只要把enumerable改成true,Object.values就会返回属性p的值。
~~~
const obj = Object.create({}, {p:
{
value: 42,
enumerable: true
}
});
Object.values(obj) // [42]
~~~
Object.values会过滤属性名为 Symbol 值的属性。
~~~
Object.values({ [Symbol()]: 123, foo: 'abc' });
// ['abc']
~~~
如果Object.values方法的参数是一个字符串,会返回各个字符组成的一个数组。
~~~
Object.values('foo')
// ['f', 'o', 'o']
~~~
上面代码中,字符串会先转成一个类似数组的对象。字符串的每个字符,就是该对象的一个属性。因此,Object.values返回每个属性的键值,就是各个字符组成的一个数组。
如果参数不是对象,Object.values会先将其转为对象。由于数值和布尔值的包装对象,都不会为实例添加非继承的属性。所以,Object.values会返回空数组。
~~~
Object.values(42) // []
Object.values(true) // []
~~~
* Object.entries
Object.entries方法返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键值对数组。
~~~
const obj = { foo: 'bar', baz: 42 };
Object.entries(obj)
// [ ["foo", "bar"], ["baz", 42] ]
~~~
除了返回值不一样,该方法的行为与Object.values基本一致。
如果原对象的属性名是一个 Symbol 值,该属性会被忽略。
~~~
Object.entries({ [Symbol()]: 123, foo: 'abc' });
// [ [ 'foo', 'abc' ] ]
~~~
上面代码中,原对象有两个属性,Object.entries只输出属性名非 Symbol 值的属性。将来可能会有Reflect.ownEntries()方法,返回对象自身的所有属性。
Object.entries的基本用途是遍历对象的属性。
~~~
let obj = { one: 1, two: 2 };
for (let [k, v] of Object.entries(obj)) {
console.log(
`${JSON.stringify(k)}: ${JSON.stringify(v)}`
);
}
// "one": 1
// "two": 2
~~~
Object.entries方法的另一个用处是,将对象转为真正的Map结构。
~~~
const obj = { foo: 'bar', baz: 42 };
const map = new Map(Object.entries(obj));
map // Map { foo: "bar", baz: 42 }
~~~
自己实现Object.entries方法,非常简单。
~~~
// Generator函数的版本
function* entries(obj) {
for (let key of Object.keys(obj)) {
yield [key, obj[key]];
}
}
// 非Generator函数的版本
function entries(obj) {
let arr = [];
for (let key of Object.keys(obj)) {
arr.push([key, obj[key]]);
}
return arr;
}
~~~
### 13. 对象的扩展运算符
《数组的扩展》一章中,已经介绍过扩展运算符(...)。
~~~
const [a, ...b] = [1, 2, 3];
a // 1
b // [2, 3]
~~~
ES2018 将这个运算符引入了对象。
* 解构赋值
对象的解构赋值用于从一个对象取值,相当于将目标对象自身的所有可遍历的(enumerable)、但尚未被读取的属性,分配到指定的对象上面。所有的键和它们的值,都会拷贝到新对象上面。
~~~
let { x, y, ...z } = { x: 1, y: 2, a: 3, b: 4 };
x // 1
y // 2
z // { a: 3, b: 4 }
~~~
上面代码中,变量z是解构赋值所在的对象。它获取等号右边的所有尚未读取的键(a和b),将它们连同值一起拷贝过来。
由于解构赋值要求等号右边是一个对象,所以如果等号右边是undefined或null,就会报错,因为它们无法转为对象。
~~~
let { x, y, ...z } = null; // 运行时错误
let { x, y, ...z } = undefined; // 运行时错误
~~~
解构赋值必须是最后一个参数,否则会报错。
~~~
let { ...x, y, z } = obj; // 句法错误
let { x, ...y, ...z } = obj; // 句法错误
~~~
> 上面代码中,解构赋值不是最后一个参数,所以会报错。
注意,解构赋值的拷贝是浅拷贝,即如果一个键的值是复合类型的值(数组、对象、函数)、那么解构赋值拷贝的是这个值的引用,而不是这个值的副本。
~~~
let obj = { a: { b: 1 } };
let { ...x } = obj;
obj.a.b = 2;
x.a.b // 2
~~~
上面代码中,x是解构赋值所在的对象,拷贝了对象obj的a属性。a属性引用了一个对象,修改这个对象的值,会影响到解构赋值对它的引用。
另外,扩展运算符的解构赋值,不能复制继承自原型对象的属性。
~~~
let o1 = { a: 1 };
let o2 = { b: 2 };
o2.__proto__ = o1;
let { ...o3 } = o2;
o3 // { b: 2 }
o3.a // undefined
~~~
上面代码中,对象o3复制了o2,但是只复制了o2自身的属性,没有复制它的原型对象o1的属性。
下面是另一个例子。
~~~
const o = Object.create({ x: 1, y: 2 });
o.z = 3;
let { x, ...newObj } = o;
let { y, z } = newObj;
x // 1
y // undefined
z // 3
~~~
上面代码中,变量x是单纯的解构赋值,所以可以读取对象o继承的属性;变量y和z是扩展运算符的解构赋值,只能读取对象o自身的属性,所以变量z可以赋值成功,变量y取不到值。ES6 规定,变量声明语句之中,如果使用解构赋值,扩展运算符后面必须是一个变量名,而不能是一个解构赋值表达式,所以上面代码引入了中间变量newObj,如果写成下面这样会报错。
~~~
let { x, ...{ y, z } } = o;
// SyntaxError: ... must be followed by an identifier in declaration contexts
~~~
解构赋值的一个用处,是扩展某个函数的参数,引入其他操作。
~~~
function baseFunction({ a, b }) {
// ...
}
function wrapperFunction({ x, y, ...restConfig }) {
// 使用 x 和 y 参数进行操作
// 其余参数传给原始函数
return baseFunction(restConfig);
}
~~~
上面代码中,原始函数baseFunction接受a和b作为参数,函数wrapperFunction在baseFunction的基础上进行了扩展,能够接受多余的参数,并且保留原始函数的行为。
* 扩展运算符
对象的扩展运算符(...)用于取出参数对象的所有可遍历属性,拷贝到当前对象之中。
~~~
let z = { a: 3, b: 4 };
let n = { ...z };
n // { a: 3, b: 4 }
~~~
这等同于使用Object.assign方法。
~~~
let aClone = { ...a };
// 等同于
let aClone = Object.assign({}, a);
~~~
上面的例子只是拷贝了对象实例的属性,如果想完整克隆一个对象,还拷贝对象原型的属性,可以采用下面的写法。
~~~
// 写法一
const clone1 = {
__proto__: Object.getPrototypeOf(obj),
...obj
};
// 写法二
const clone2 = Object.assign(
Object.create(Object.getPrototypeOf(obj)),
obj
);
// 写法三
const clone3 = Object.create(
Object.getPrototypeOf(obj),
Object.getOwnPropertyDescriptors(obj)
)
~~~
上面代码中,写法一的__proto__属性在非浏览器的环境不一定部署,因此推荐使用写法二和写法三。
扩展运算符可以用于合并两个对象。
~~~
let ab = { ...a, ...b };
// 等同于
let ab = Object.assign({}, a, b);
~~~
如果用户自定义的属性,放在扩展运算符后面,则扩展运算符内部的同名属性会被覆盖掉。
~~~
let aWithOverrides = { ...a, x: 1, y: 2 };
// 等同于
let aWithOverrides = { ...a, ...{ x: 1, y: 2 } };
// 等同于
let x = 1, y = 2, aWithOverrides = { ...a, x, y };
// 等同于
let aWithOverrides = Object.assign({}, a, { x: 1, y: 2 });
~~~
上面代码中,a对象的x属性和y属性,拷贝到新对象后会被覆盖掉。
这用来修改现有对象部分的属性就很方便了。
~~~
let newVersion = {
...previousVersion,
name: 'New Name' // Override the name property
};
~~~
上面代码中,newVersion对象自定义了name属性,其他属性全部复制自previousVersion对象。
如果把自定义属性放在扩展运算符前面,就变成了设置新对象的默认属性值。
~~~
let aWithDefaults = { x: 1, y: 2, ...a };
// 等同于
let aWithDefaults = Object.assign({}, { x: 1, y: 2 }, a);
// 等同于
let aWithDefaults = Object.assign({ x: 1, y: 2 }, a);
~~~
与数组的扩展运算符一样,对象的扩展运算符后面可以跟表达式。
~~~
const obj = {
...(x > 1 ? {a: 1} : {}),
b: 2,
};
~~~
如果扩展运算符后面是一个空对象,则没有任何效果。
~~~
{...{}, a: 1}
// { a: 1 }
~~~
如果扩展运算符的参数是null或undefined,这两个值会被忽略,不会报错。
`let emptyObject = { ...null, ...undefined }; // 不报错`
扩展运算符的参数对象之中,如果有取值函数get,这个函数是会执行的。
~~~
// 并不会抛出错误,因为 x 属性只是被定义,但没执行
let aWithXGetter = {
...a,
get x() {
throw new Error('not throw yet');
}
};
// 会抛出错误,因为 x 属性被执行了
let runtimeError = {
...a,
...{
get x() {
throw new Error('throw now');
}
}
};
~~~
- js
- js继承
- keyCode
- 好的网站
- 零散知识点-js
- This
- 对象深拷贝和浅拷贝
- 数组方法
- 数组的深拷贝和浅拷贝
- JS 引擎的执行机制
- js中的new
- 常用正则
- 函数柯里化
- 会修改当前数组的方法
- 不会修改当前数组的方法
- 函数式编程
- 循环遍历
- 基础知识
- 异步
- js知识总结
- fileReader
- HTML
- 零散知识点
- html5新特性
- viewport
- CSS
- cursor
- css3新特性
- 水平居中
- 垂直居中
- display解析
- 块级元素和行内元素
- css技巧和方法
- 清除浮动
- Less
- Sass
- 综合
- 微信小程序
- 前端面试
- CSS-面试
- JS-面试
- js-web-api
- js知识
- MVC-面试
- jQuery与框架的区别
- 闭包
- promise
- http状态码
- cdn
- 离线存储
- 事件
- web安全
- 性能优化
- 响应式
- 服务器渲染和本地渲染
- 模板是什么?
- VUE流程
- 浏览器渲染过程
- this的指向
- new的使用
- HTML-面试
- title和alt区别
- html5元素
- h5新特性
- 图片格式
- 零散面试总结
- react
- 生命周期-react
- state
- props
- 组件通信
- 虚拟DOM
- 源码分析
- webstorm-template
- element与component区别
- 组件的理解
- JXS
- vue与react区别
- 16.8版本
- vue
- 生命周期-vue
- 实现流程
- webpack
- 概念
- 入口起点
- 出口
- loader
- 模式
- 插件
- manifest
- redux
- 介绍
- 核心概念
- 三大原则
- 基础
- action
- reducer
- store
- 数据流
- 高级
- 异步action
- 异步数据流
- middleware
- ES6阮一峰
- ...
- let
- es6箭头函数
- const
- 块级作用域
- 顶层对象的属性
- global 对象
- 变量的解构赋值
- 字符串的扩展
- promise对象
- 正则的扩展
- 数值的扩展
- Math对象的扩展
- 函数的扩展
- 数组的扩展
- 对象的扩展
- symbol
- async函数
- class的基本用法
- Class 的继承
- Set 和 Map 数据结构
- 开发工具
- 好用的软件
- chrome插件
- 其他实用工具
- 微信公众号-前端早读课
- 【第1352期】map和reduce,处理数据结构的利器
- 微信公众号-前端大全
- JS 的执行机制
- 一篇文章理解 JS 继承
- 浏览器
- 缓存
- 《Webkit技术内幕》之页面渲染过程
- 跨域
- 安全
- XSS
- 设计模式
- 发布订阅模式
- 工厂模式
- MV*模式
- 观察者模式
- react-router
- 一些小技巧
- js一些小算法
- 1.已知一个数组中的值,在另外一个数组中查找该值
- 累加器
- 数组随机
- 数组扁平化并去重排序
- Immutable
- 常用命令
- hybrid
- schema封装
- typescript