[TOC]
## 优点
Protobuf 有如 XML,不过它更小、更快、也更简单。你可以定义自己的数据结构,然后使用代码生成器生成的代码来读写这个数据结构。你甚至可以在无需重新部署程序的情况下更新数据结构。只需使用 Protobuf 对数据结构进行一次描述,即可利用各种不同语言或从各种不同数据流中对你的结构化数据轻松读写。
它有一个非常棒的特性,即“向后”兼容性好,人们不必破坏已部署的、依靠“老”数据格式的程序就可以对数据结构进行升级。这样您的程序就可以不必担心因为消息结构的改变而造成的大规模的代码重构或者迁移的问题。因为添加新的消息中的 field 并不会引起已经发布的程序的任何改变。
Protobuf 语义更清晰,无需类似 XML 解析器的东西(因为 Protobuf 编译器会将 .proto 文件编译生成对应的数据访问类以对 Protobuf 数据进行序列化、反序列化操作)。
使用 Protobuf 无需学习复杂的文档对象模型,Protobuf 的编程模式比较友好,简单易学,同时它拥有良好的文档和示例,对于喜欢简单事物的人们而言,Protobuf 比其他的技术更加有吸引力。
**包的体积小 解包速度快**
## 不足
由于文本并不适合用来描述数据结构,所以 Protobuf 也不适合用来对基于文本的标记文档(如 HTML)建模。另外,由于 XML 具有某种程度上的自解释性,它可以被人直接读取编辑,在这一点上 Protobuf 不行,它以二进制的方式存储,除非你有 .proto 定义,否则你没法直接读出 Protobuf 的任何内容【 2 】。
**无法直接看懂**
## Encode
### Varint
考察消息结构之前,让我首先要介绍一个叫做 Varint 的术语。Varint 是一种紧凑的表示数字的方法。它用一个或多个字节来表示一个数字,值越小的数字使用越少的字节数。这能减少用来表示数字的字节数。
比如对于 int32 类型的数字,一般需要 4 个 byte 来表示。但是采用 Varint,对于很小的 int32 类型的数字,则可以用 1 个 byte 来表示。当然凡事都有好的也有不好的一面,采用 Varint 表示法,大的数字则需要 5 个 byte 来表示。从统计的角度来说,一般不会所有的消息中的数字都是大数,因此大多数情况下,采用 Varint 后,可以用更少的字节数来表示数字信息。下面就详细介绍一下 Varint。
Varint 中的每个 byte 的最高位 bit 有特殊的含义,如果该位为 1,表示后续的 byte 也是该数字的一部分,如果该位为 0,则结束。其他的 7 个 bit 都用来表示数字。因此小于 128 的数字都可以用一个 byte 表示。大于 128 的数字,比如 300,会用两个字节来表示:1010 1100 0000 0010。下图演示了 Google Protocol Buffer 如何解析两个 bytes。注意到最终计算前将两个 byte 的位置相互交换过一次,这是因为 Google Protocol Buffer 字节序采用 little-endian 的方式。
![](https://img.kancloud.cn/64/1c/641c84536e7e11c4faa4e08b300f3acb_320x190.png)
### zigzag
在计算机内,一个负数一般会被表示为一个很大的整数,因为计算机定义负数的符号位为数字的最高位。如果采用 Varint 表示一个负数,那么一定需要 5 个 byte。为此 Google Protocol Buffer 定义了 sint32 这种类型,采用 zigzag 编码。
Zigzag 编码用无符号数来表示有符号数字,正数和负数交错,这就是 zigzag 这个词的含义了。
### Key-Value
消息经过序列化后会成为一个二进制数据流,该流中的数据为一系列的 Key-Value 对。如下图所示。
![](https://img.kancloud.cn/41/65/4165a67abb8033ef9c80481a179891d8_450x160.png)
Key 用来标识具体的 field,在解包的时候,Protocol Buffer 根据 Key 就可以知道相应的 Value 应该对应于消息中的哪一个 field。
**key包含 id 以及类型**
**Key 的定义如下:**
```
(field_number << 3) | wire_type
```
可以看到 Key 由两部分组成。第一部分是 field\_number,比如消息 lm.helloworld 中 field id 的 field\_number 为 1。第二部分为 wire\_type。表示 Value 的传输类型。
## 封解包
首先我们来了解一下 XML 的封解包过程。XML 需要从文件中读取出字符串,再转换为 XML 文档对象结构模型。之后,再从 XML 文档对象结构模型中读取指定节点的字符串,最后再将这个字符串转换成指定类型的变量。这个过程非常复杂,其中将 XML 文件转换为文档对象结构模型的过程通常需要完成词法文法分析等大量消耗 CPU 的复杂计算。
反观 Protobuf,它只需要简单地将一个二进制序列,按照指定的格式读取到 C++ 对应的结构类型中就可以了。从上一节的描述可以看到消息的 decoding 过程也可以通过几个位移操作组成的表达式计算即可完成。速度非常快。
- Android
- 四大组件
- Activity
- Fragment
- Service
- 序列化
- Handler
- Hander介绍
- MessageQueue详细
- 启动流程
- 系统启动流程
- 应用启动流程
- Activity启动流程
- View
- view绘制
- view事件传递
- choreographer
- LayoutInflater
- UI渲染概念
- Binder
- Binder原理
- Binder最大数据
- Binder小结
- Android组件
- ListView原理
- RecyclerView原理
- SharePreferences
- AsyncTask
- Sqlite
- SQLCipher加密
- 迁移与修复
- Sqlite内核
- Sqlite优化v2
- sqlite索引
- sqlite之wal
- sqlite之锁机制
- 网络
- 基础
- TCP
- HTTP
- HTTP1.1
- HTTP2.0
- HTTPS
- HTTP3.0
- HTTP进化图
- HTTP小结
- 实践
- 网络优化
- Json
- ProtoBuffer
- 断点续传
- 性能
- 卡顿
- 卡顿监控
- ANR
- ANR监控
- 内存
- 内存问题与优化
- 图片内存优化
- 线下内存监控
- 线上内存监控
- 启动优化
- 死锁监控
- 崩溃监控
- 包体积优化
- UI渲染优化
- UI常规优化
- I/O监控
- 电量监控
- 第三方框架
- 网络框架
- Volley
- Okhttp
- 网络框架n问
- OkHttp原理N问
- 设计模式
- EventBus
- Rxjava
- 图片
- ImageWoker
- Gilde的优化
- APT
- 依赖注入
- APT
- ARouter
- ButterKnife
- MMKV
- Jetpack
- 协程
- MVI
- Startup
- DataBinder
- 黑科技
- hook
- 运行期Java-hook技术
- 编译期hook
- ASM
- Transform增量编译
- 运行期Native-hook技术
- 热修复
- 插件化
- AAB
- Shadow
- 虚拟机
- 其他
- UI自动化
- JavaParser
- Android Line
- 编译
- 疑难杂症
- Android11滑动异常
- 方案
- 工业化
- 模块化
- 隐私合规
- 动态化
- 项目管理
- 业务启动优化
- 业务架构设计
- 性能优化case
- 性能优化-排查思路
- 性能优化-现有方案
- 登录
- 搜索
- C++
- NDK入门
- 跨平台
- H5
- Flutter
- Flutter 性能优化
- 数据跨平台