本文转载自[volatile关键字及其作用](https://blog.csdn.net/u010255818/article/details/65633033)
[TOC]
volatile关键字有两个作用,一是保证内存可见性,二是禁止指令重排优化。
# 保证内存可见性
可见性是指线程之间的可见性,一个线程修改的状态对另一个线程是可见的。也就是一个线程修改的结果,另一个线程马上就能看到。
## 原理
当对非volatile变量进行读写的时候,每个线程先从主内存拷贝变量到CPU缓存中,如果计算机有多个CPU,每个线程可能在不同的CPU上被处理,这意味着每个线程可以拷贝到不同的CPU cache中。
volatile变量不会被缓存在寄存器或者对其他处理器不可见的地方,保证了每次读写变量都从主内存中读,跳过CP[【源码分析】ThreadPoolExecutor源码分析](ThreadPoolExecutor%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90.md)U cache这一步。当一个线程修改了这个变量的值,新值对于其他线程是立即得知的。
![](https://img.kancloud.cn/6b/be/6bbec38ba8bc9f5275b795b2d1061aba_550x429.png)
# 禁止指令重排
## 什么是指令重排
指令重排序是JVM为了优化指令、提高程序运行效率,在不影响单线程程序执行结果的前提下,尽可能地提高并行度。指令重排序包括编译器重排序和运行时重排序。
在JDK1.5之后,可以使用volatile变量禁止指令重排序。针对volatile修饰的变量,在读写操作指令前后会插入内存屏障,指令重排序时不能把后面的指令重排序到内存屏。
```java
double r = 2.1; //(1)
double pi = 3.14;//(2)
double area = pi*r*r;//(3)
```
虽然代码语句的定义顺序为1->2->3,但是计算顺序1->2->3与2->1->3对结果并无影响,所以编译时和运行时可以根据需要对1、2语句进行重排序。
## 指令重排带来的问题
如果一个操作不是原子的,就会给JVM留下重排的机会。
```java
线程A中
{
context = loadContext();
inited = true;
}
线程B中
{
if (inited)
fun(context);
}
```
如果线程A中的指令发生了重排序,那么B中很可能就会拿到一个尚未初始化或尚未初始化完成的context,从而引发程序错误。
## 禁止指令重排的原理
volatile关键字提供内存屏障的方式来防止指令被重排,编译器在生成字节码文件时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。
JVM内存屏障插入策略:
* 在每个volatile写操作的前面插入一个StoreStore屏障;
* 在每个volatile写操作的后面插入一个StoreLoad屏障;
* 在每个volatile读操作的前面插入一个LoadLoad屏障;
* 在每个volatile读操作的后面插入一个LoadStore屏障。
## 原子操作
原子(atom)本意是“不能被进一步分割的最小粒子”,而原子操作(atomic operation)意为"不可被中断的一个或一系列操作" ,指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。
# 总结
1、volatile是**轻量级同步机制**。在访问volatile变量时不会执行加锁操作,因此也就不会使执行线程阻塞,是一种比synchronized关键字更轻量级的同步机制。
2、volatile**无法同时保证内存可见性和原子性**。加锁机制既可以确保可见性又可以确保原子性,而volatile变量**只能确保可见性**。
3、volatile不能修饰写入操作依赖当前值的变量。声明为volatile的简单变量如果当前值与该变量以前的值相关,那么volatile关键字不起作用,也就是说如下的表达式都不是原子操作:“count++”、“count = count+1”。
4、当要访问的变量已在synchronized代码块中,或者为常量时,没必要使用volatile;
5、volatile屏蔽掉了JVM中必要的代码优化,所以在效率上比较低,因此一定在必要时才使用此关键字。
- 导读
- Java知识
- Java基本程序设计结构
- 【基础知识】Java基础
- 【源码分析】Okio
- 【源码分析】深入理解i++和++i
- 【专题分析】JVM与GC
- 【面试清单】Java基本程序设计结构
- 对象与类
- 【基础知识】对象与类
- 【专题分析】Java类加载过程
- 【面试清单】对象与类
- 泛型
- 【基础知识】泛型
- 【面试清单】泛型
- 集合
- 【基础知识】集合
- 【源码分析】SparseArray
- 【面试清单】集合
- 多线程
- 【基础知识】多线程
- 【源码分析】ThreadPoolExecutor源码分析
- 【专题分析】volatile关键字
- 【面试清单】多线程
- Java新特性
- 【专题分析】Lambda表达式
- 【专题分析】注解
- 【面试清单】Java新特性
- Effective Java笔记
- Android知识
- Activity
- 【基础知识】Activity
- 【专题分析】运行时权限
- 【专题分析】使用Intent打开三方应用
- 【源码分析】Activity的工作过程
- 【面试清单】Activity
- 架构组件
- 【专题分析】MVC、MVP与MVVM
- 【专题分析】数据绑定
- 【面试清单】架构组件
- 界面
- 【专题分析】自定义View
- 【专题分析】ImageView的ScaleType属性
- 【专题分析】ConstraintLayout 使用
- 【专题分析】搞懂点九图
- 【专题分析】Adapter
- 【源码分析】LayoutInflater
- 【源码分析】ViewStub
- 【源码分析】View三大流程
- 【源码分析】触摸事件分发机制
- 【源码分析】按键事件分发机制
- 【源码分析】Android窗口机制
- 【面试清单】界面
- 动画和过渡
- 【基础知识】动画和过渡
- 【面试清单】动画和过渡
- 图片和图形
- 【专题分析】图片加载
- 【面试清单】图片和图形
- 后台任务
- 应用数据和文件
- 基于网络的内容
- 多线程与多进程
- 【基础知识】多线程与多进程
- 【源码分析】Handler
- 【源码分析】AsyncTask
- 【专题分析】Service
- 【源码分析】Parcelable
- 【专题分析】Binder
- 【源码分析】Messenger
- 【面试清单】多线程与多进程
- 应用优化
- 【专题分析】布局优化
- 【专题分析】绘制优化
- 【专题分析】内存优化
- 【专题分析】启动优化
- 【专题分析】电池优化
- 【专题分析】包大小优化
- 【面试清单】应用优化
- Android新特性
- 【专题分析】状态栏、ActionBar和导航栏
- 【专题分析】应用图标、通知栏适配
- 【专题分析】Android新版本重要变更
- 【专题分析】唯一标识符的最佳做法
- 开源库源码分析
- 【源码分析】BaseRecyclerViewAdapterHelper
- 【源码分析】ButterKnife
- 【源码分析】Dagger2
- 【源码分析】EventBus3(一)
- 【源码分析】EventBus3(二)
- 【源码分析】Glide
- 【源码分析】OkHttp
- 【源码分析】Retrofit
- 其他知识
- Flutter
- 原生开发与跨平台开发
- 整体归纳
- 状态及状态管理
- 零碎知识点
- 添加Flutter到现有应用
- Git知识
- Git命令
- .gitignore文件
- 设计模式
- 创建型模式
- 结构型模式
- 行为型模式
- RxJava
- 基础
- Linux知识
- 环境变量
- Linux命令
- ADB命令
- 算法
- 常见数据结构及实现
- 数组
- 排序算法
- 链表
- 二叉树
- 栈和队列
- 算法时间复杂度
- 常见算法思想
- 其他技术
- 正则表达式
- 编码格式
- HTTP与HTTPS
- 【面试清单】其他知识
- 开发归纳
- Android零碎问题
- 其他零碎问题
- 开发思路