尽管SystemUI的表现形式与普通的Android应用程序大相径庭,但它却是以一个APK的形式存在于系统之中,即它与普通的Android应用程序并没有本质上的区别。无非是通过Android四大组件中的Activity、Service、BroadcastReceiver接受外界的请求并执行相关的操作,只不过它们所接受到的请求主要来自各个系统服务而已。
SystemUI包罗万象,并且大部分功能之间相互独立,比如RecentPanel、TakeScreenshotService等均是按需启动,并在完成其既定任务后退出,这与普通的Activity以及Service别无二致。比较特殊的是状态栏、导航栏等组件的启动方式。它们运行于一个称之为SystemUIService的一个Service之中。因此讨论状态栏与导航栏的启动过程其实就是SystemUIService的启动过程。
#### 1.SystemUIService的启动时机
那么SystemUIService在何时由谁启动的呢?作为一个系统级别的UI组件,自然要在系统的启动过程中来寻找答案了。
在负责启动各种系统服务的ServerThread中,当核心系统服务启动完成后ServerThread会通过调用ActivityManagerService.systemReady()方法通知AMS系统已经就绪。这个systemReady()拥有一个名为goingCallback的Runnable实例作为参数。顾名思义,当AMS完成对systemReady()的处理后将会回调这一Runnable的run()方法。而在这一run()方法中可以找到SystemUI的身影:
**SystemServer.java-->ServerThread**
```
ActivityManagerService.self().systemReady(newRunnable() {
publicvoid run() {
// 调用startSystemUi()
if(!headless) startSystemUi(contextF);
......
}
}
```
进一步地,在startSystemUI()方法中:
**SystemServer.java-->ServerThread.startSystemUi()**
```
static final void startSystemUi(Context context) {
Intentintent = new Intent();
// 设置SystemUIService作为启动目标
intent.setComponent(new ComponentName("com.android.systemui",
"com.android.systemui.SystemUIService"));
// 启动SystemUIService
context.startServiceAsUser(intent, UserHandle.OWNER);
}
```
可见,当核心的系统服务启动完毕后,ServerThread通过Context.startServiceAsUser()方法完成了SystemUIService的启动。
#### 2.SystemUIService的创建
参考SystemUIService的onCreate()的实现:
**SystemUIService.java-->SystemUIService.onCreate()**
```
/* **①SERVICES数组定义了运行于SystemUIService之中的子服务列表。**当SystemUIService服务启动
时将会依次启动列表中所存储的子服务 */
final Object[] SERVICES = new Object[] {
0,// 0号元素存储的其实是一个字符串资源号,这个字符串资源存储了实现了状态栏/导航栏的类名
com.android.systemui.power.PowerUI.class,
com.android.systemui.media.RingtonePlayer.class,
};
public void onCreate() {
......
IWindowManager wm = WindowManagerGlobal.getWindowManagerService();
try {
/* **② 根据IWindowManager.hasSystemNavBar()的返回值选择一个合适的**
** 状态栏与导航栏的实现** */
SERVICES[0] = wm.hasSystemNavBar()
? R.string.config_systemBarComponent
: R.string.config_statusBarComponent;
} catch(RemoteException e) {......}
finalint N = SERVICES.length;
//mServices数组中存储了子服务的实例
mServices = new SystemUI[N];
for (inti=0; i<N; i++) {
Class cl = chooseClass(SERVICES[i]);
try{
// **③ 实例化子服务并将其存储在mServices数组中**
mServices[i] = (SystemUI)cl.newInstance();
}catch (IllegalAccessException ex) {......}
// **④ 设置Context,并通过调用其start()方法运行它**
mServices[i].mContext = this;
mServices[i].start();
}
}
```
除了onCreate()方法之外,SystemUIService没有其他有意义的代码了。显而易见,SystemUIService是一个容器。在其启动时,将会逐个实例化定义在SERVICIES列表中的继承自SystemUI抽象类的子服务。在调用了子服务的start()方法之后,SystemUIService便不再做任何其他的事情,任由各个子服务自行运行。而状态栏导航栏则是这些子服务中的一个。
值得注意的是,onCreate()方法根据IWindowManager.hasSystemNavBar()方法的返回值为状态栏/导航栏选择了不同的实现。进行这一选择的原因为了能够在大尺寸的设备中更有效地利用屏幕空间。在小屏幕设备如手机中,由于屏幕宽度有限,Android采取了状态栏与导航栏分离的布局方案,也就是说导航栏与状态栏占用了更多的垂直空间,使得导航栏的虚拟按键尺寸足够大以及状态栏的信息量足够多。而在大屏幕设备如平板电脑中,由于屏幕宽度比较大,足以在一个屏幕宽度中同时显示足够大的虚拟按键以及足够多的状态栏信息量,此时可以选择将状态栏与导航栏功能集成在一起成为系统栏作为大屏幕下的布局方案,以节省对垂直空间的占用。
hasSystemNavBar()的返回值取决于PhoneWindowManager.mHasSystemNavBar成员的取值。因此在PhoneWindowManager.setInitialDisplaySize()方法中可以得知Android在两种布局方案中进行选择的策略。
**PhoneWindowManager.java-->PhoneWindowManager.setInitialDisplaySize()**
```
public void setInitialDisplaySize(Display display,int width
, intheight, int density) {
......
// **① 计算屏幕短边的DP宽度**
intshortSizeDp = shortSize * DisplayMetrics.DENSITY_DEFAULT / density;
// **② 屏幕宽度在720dp以内时,使用分离的布局方案**
if(shortSizeDp < 600) {
mHasSystemNavBar= false;
mNavigationBarCanMove = true;
} elseif (shortSizeDp < 720) {
mHasSystemNavBar = false;
mNavigationBarCanMove = false;
}
......
}
```
在SystemUI中,分离布局方案的实现者是PhoneStatusBar,而集成布局方案的实现者则是TabletStatusBar。二者的本质功能是一致的,即提供虚拟按键、显示通知信息等,区别仅在于布局的不同、以及由此所衍生出的定制行为而已。因此不难想到,它们是从同一个父类中继承出来的。这一父类的名字是BaseStatusBar。本章将主要介绍PhoneStatusBar的实现,读者可以类比地对TabletStatusBar进行研究。
- 前言
- 推荐序
- 第1章 开发环境部署
- 1.1获取Android源代码
- 1.2Android的编译
- 1.3在IDE中导入Android源代码
- 1.3.1将Android源代码导入Eclipse
- 1.3.2将Android源代码导入SourceInsight
- 1.4调试Android源代码
- 1.4.1使用Eclipse调试Android Java源代码
- 1.4.2使用gdb调试Android C/C 源代码
- 1.5本章小结
- 第2章 深入理解Java Binder和MessageQueue
- 2.1概述
- 2.2Java层中的Binder分析
- 2.2.1Binder架构总览
- 2.2.2初始化Java层Binder框架
- 2.2.3窥一斑,可见全豹乎
- 2.2.4理解AIDL
- 2.2.5Java层Binder架构总结
- 2.3心系两界的MessageQueue
- 2.3.1MessageQueue的创建
- 2.3.2提取消息
- 2.3.3nativePollOnce函数分析
- 2.3.4MessageQueue总结
- 2.4本章小结
- 第3章 深入理解AudioService
- 3.1概述
- 3.2音量管理
- 3.2.1音量键的处理流程
- 3.2.2通用的音量设置函数setStreamVolume()
- 3.2.3静音控制
- 3.2.4音量控制小结
- 3.3音频外设的管理
- 3.3.1 WiredAccessoryObserver 设备状态的监控
- 3.3.2AudioService的外设状态管理
- 3.3.3音频外设管理小结
- 3.4AudioFocus机制的实现
- 3.4.1AudioFocus简单的例子
- 3.4.2AudioFocus实现原理简介
- 3.4.3申请AudioFocus
- 3.4.4释放AudioFocus
- 3.4.5AudioFocus小结
- 3.5AudioService的其他功能
- 3.6本章小结
- 第4章 深入理解WindowManager-Service
- 4.1初识WindowManagerService
- 4.1.1一个从命令行启动的动画窗口
- 4.1.2WMS的构成
- 4.1.3初识WMS的小结
- 4.2WMS的窗口管理结构
- 4.2.1理解WindowToken
- 4.2.2理解WindowState
- 4.2.3理解DisplayContent
- 4.3理解窗口的显示次序
- 4.3.1主序、子序和窗口类型
- 4.3.2通过主序与子序确定窗口的次序
- 4.3.3更新显示次序到Surface
- 4.3.4关于显示次序的小结
- 4.4窗口的布局
- 4.4.1从relayoutWindow()开始
- 4.4.2布局操作的外围代码分析
- 4.4.3初探performLayoutAndPlaceSurfacesLockedInner()
- 4.4.4布局的前期处理
- 4.4.5布局DisplayContent
- 4.4.6布局的阶段
- 4.5WMS的动画系统
- 4.5.1Android动画原理简介
- 4.5.2WMS的动画系统框架
- 4.5.3WindowAnimator分析
- 4.5.4深入理解窗口动画
- 4.5.5交替运行的布局系统与动画系统
- 4.5.6动画系统总结
- 4.6本章小结
- 第5章 深入理解Android输入系统
- 5.1初识Android输入系统
- 5.1.1getevent与sendevent工具
- 5.1.2Android输入系统简介
- 5.1.3IMS的构成
- 5.2原始事件的读取与加工
- 5.2.1基础知识:INotify与Epoll
- 5.2.2 InputReader的总体流程
- 5.2.3 深入理解EventHub
- 5.2.4 深入理解InputReader
- 5.2.5原始事件的读取与加工总结
- 5.3输入事件的派发
- 5.3.1通用事件派发流程
- 5.3.2按键事件的派发
- 5.3.3DispatcherPolicy与InputFilter
- 5.3.4输入事件的派发总结
- 5.4输入事件的发送、接收与反馈
- 5.4.1深入理解InputChannel
- 5.4.2连接InputDispatcher和窗口
- 5.4.3事件的发送
- 5.4.4事件的接收
- 5.4.5事件的反馈与发送循环
- 5.4.6输入事件的发送、接收与反馈总结
- 5.5关于输入系统的其他重要话题
- 5.5.1输入事件ANR的产生
- 5.5.2 焦点窗口的确定
- 5.5.3以软件方式模拟用户操作
- 5.6本章小结
- 第6章 深入理解控件系统
- 6.1 初识Android的控件系统
- 6.1.1 另一种创建窗口的方法
- 6.1.2 控件系统的组成
- 6.2 深入理解WindowManager
- 6.2.1 WindowManager的创建与体系结构
- 6.2.2 通过WindowManagerGlobal添加窗口
- 6.2.3 更新窗口的布局
- 6.2.4 删除窗口
- 6.2.5 WindowManager的总结
- 6.3 深入理解ViewRootImpl
- 6.3.1 ViewRootImpl的创建及其重要的成员
- 6.3.2 控件系统的心跳:performTraversals()
- 6.3.3 ViewRootImpl总结
- 6.4 深入理解控件树的绘制
- 6.4.1 理解Canvas
- 6.4.2 View.invalidate()与脏区域
- 6.4.3 开始绘制
- 6.4.4 软件绘制的原理
- 6.4.5 硬件加速绘制的原理
- 6.4.6 使用绘图缓存
- 6.4.7 控件动画
- 6.4.8 绘制控件树的总结
- 6.5 深入理解输入事件的派发
- 6.5.1 触摸模式
- 6.5.2 控件焦点
- 6.5.3 输入事件派发的综述
- 6.5.4 按键事件的派发
- 6.5.5 触摸事件的派发
- 6.5.6 输入事件派发的总结
- 6.6 Activity与控件系统
- 6.6.1 理解PhoneWindow
- 6.6.2 Activity窗口的创建与显示
- 6.7 本章小结
- 第7章 深入理解SystemUI
- 7.1 初识SystemUI
- 7.1.1 SystemUIService的启动
- 7.1.2 状态栏与导航栏的创建
- 7.1.3 理解IStatusBarService
- 7.1.4 SystemUI的体系结构
- 7.2 深入理解状态栏
- 7.2.1 状态栏窗口的创建与控件树结构
- 7.2.2 通知信息的管理与显示
- 7.2.3 系统状态图标区的管理与显示
- 7.2.4 状态栏总结
- 7.3 深入理解导航栏
- 7.3.1 导航栏的创建
- 7.3.2 虚拟按键的工作原理
- 7.3.3 SearchPanel
- 7.3.4 关于导航栏的其他话题
- 7.3.5 导航栏总结
- 7.4 禁用状态栏与导航栏的功能
- 7.4.1 如何禁用状态栏与导航栏的功能
- 7.4.2 StatusBarManagerService对禁用标记的维护
- 7.4.3 状态栏与导航栏对禁用标记的响应
- 7.5 理解SystemUIVisibility
- 7.5.1 SystemUIVisibility在系统中的漫游过程
- 7.5.2 SystemUIVisibility发挥作用
- 7.5.3 SystemUIVisibility总结
- 7.6 本章小结
- 第8章 深入理解Android壁纸
- 8.1 初识Android壁纸
- 8.2深入理解动态壁纸
- 8.2.1启动动态壁纸的方法
- 8.2.2壁纸服务的启动原理
- 8.2.3 理解UpdateSurface()方法
- 8.2.4 壁纸的销毁
- 8.2.5 理解Engine的回调
- 8.3 深入理解静态壁纸-ImageWallpaper
- 8.3.1 获取用作静态壁纸的位图
- 8.3.2 静态壁纸位图的设置
- 8.3.3 连接静态壁纸的设置与获取-WallpaperObserver
- 8.4 WMS对壁纸窗口的特殊处理
- 8.4.1 壁纸窗口Z序的确定
- 8.4.2 壁纸窗口的可见性
- 8.4.3 壁纸窗口的动画
- 8.4.4 壁纸窗口总结
- 8.5 本章小结