求矩阵的行列式,矩阵的行和列要相等
*****
矩阵可以用来求解线性方程组:
![](https://img.kancloud.cn/94/f2/94f2efec17b2aeb055211dff65650d47_1326x623.png)
一个线性变换将向量x变为向量v
![](https://img.kancloud.cn/81/a0/81a05d7e1607291a78857cd0954e49d0_1192x591.png)
*****
![](https://img.kancloud.cn/76/f7/76f7c03e8faf682ed9386d7c0a69ae4b_1083x693.png)
![](https://img.kancloud.cn/db/29/db29086ff9d40d375842d953f7be752e_1279x729.png)
![](https://img.kancloud.cn/8b/68/8b68f76a423fe9729c148a074493ea06_1092x706.png)
![](https://img.kancloud.cn/1b/82/1b823ff49e934a10f42d399bc9c39a14_1215x693.png)
![](https://img.kancloud.cn/36/da/36da8a1f1d9fe31b358abd69d77c2771_1119x495.png)
*****
变换A的行列式不为0
![](https://img.kancloud.cn/b1/2b/b12bed625402732d24ed109e91264560_1083x700.png)
v向量通过逆变换来找到x向量
![](https://img.kancloud.cn/91/6d/916d106e6809a1ea43a802cf6e206606_974x706.png)
**逆变换**
![](https://img.kancloud.cn/11/e1/11e1de0a94c5350f80bcbad96bbc3754_1331x731.png)
先进行线性变换A,再进行逆变换。结果为原坐标系回到初始状态,基向量**i**和**j**都保持不变
![](https://img.kancloud.cn/a1/ac/a1acd526ccb931a1c0e091cdee7d138a_1302x740.png)
*****
![](https://img.kancloud.cn/bd/05/bd05028d3cfc439689decee7475f8765_959x608.png)
在两边同时乘A的逆矩阵来求解向量X。在几何上的意义就是对向量v进行A的逆向变换来找到向量x
![](https://img.kancloud.cn/fe/41/fe4122f5cc198a26418b2e5dedab91a9_921x536.png)
*****
## 当行列式det(A)=0时
![](https://img.kancloud.cn/d8/90/d8907b51a7fcef5142a60bd3f8ce9f52_1262x702.png)
![](https://img.kancloud.cn/61/c7/61c7ded1069453dc1766bde00fe9a629_1197x727.png)
![](https://img.kancloud.cn/8f/31/8f3186256cbc552568474b1e03dfb1a3_1213x711.png)
![](https://img.kancloud.cn/f9/3b/f93bfc1c219308217e580756ec6c2187_1288x709.png)
![](https://img.kancloud.cn/3c/ee/3cee73633e710019cd08a578deeb5b5b_1288x764.png)
![](https://img.kancloud.cn/c8/cf/c8cf22287deaf7a331e8432ca212996a_1332x727.png)
*****
![](https://img.kancloud.cn/b0/77/b07706c8dfdd99d9cd8ee25993cb6725_1302x714.png)
*****
![](https://img.kancloud.cn/56/35/56351c6a1b0af9108e90d56209a8591f_1255x721.png)
![](https://img.kancloud.cn/b1/f8/b1f8f8d7d30b2383ca3dc7609883b80b_1173x694.png)
*****
当变换将二维压缩成一条直线,称这个变换的秩为1
![](https://img.kancloud.cn/f4/6f/f46f1d9994b2d299364663a7b1652b54_1324x704.png)
![](https://img.kancloud.cn/b2/b1/b2b17fed193c9dd27397657fc4920455_1265x706.png)
![](https://img.kancloud.cn/e1/61/e161741304310659f4e14e8fec2314e0_1267x707.png)
![](https://img.kancloud.cn/61/75/61756dd0752f215732353781930ec1ed_981x645.png)
*****
基向量可以张成二维空间,且矩阵的行列式的不为零
![](https://img.kancloud.cn/72/a3/72a349b5d838f4b4e1ba6635c75496be_1269x693.png)
*****
![](https://img.kancloud.cn/73/36/7336b99456d8eb732a2ca467f86bd85c_1207x703.png)
*****
所有矩阵变换变换结果的集合是矩阵的"列空间"
![](https://img.kancloud.cn/e2/c1/e2c1fc107f69e9d3f955c72073599fa0_1157x698.png)
**原因**
![](https://img.kancloud.cn/98/4a/984a17f4c5ecac3d6add14b1d9121806_1278x696.png)
![](https://img.kancloud.cn/7c/12/7c12fd531438e85f5fea4f2484ea3ca6_1187x703.png)
![](https://img.kancloud.cn/f3/e4/f3e4ec836da99a89fcc1e13c710a6018_1165x697.png)
**秩的精确定义**
![](https://img.kancloud.cn/ae/77/ae7799a18b50ef56b3935944a152ba2e_614x93.png)
![](https://img.kancloud.cn/73/c0/73c0bbf19b14c725c3f4147f0a0ac133_626x97.png)
![](https://img.kancloud.cn/e4/30/e4301e18dd2a72446d4cdfeb9322a9b5_1195x704.png)
![](https://img.kancloud.cn/f7/c6/f7c6150145261ee17c3c24a661c06987_887x711.png)
因为线性变换原点不变
![](https://img.kancloud.cn/70/68/7068264964635bfcc2fc2e6dc1041a7b_1096x727.png)
*****
![](https://img.kancloud.cn/9c/8e/9c8ef6620eca2aa7d7623e94b6f71025_1128x708.png)
![](https://img.kancloud.cn/72/ba/72ba11d72116869878a7f58c624eef37_1094x719.png)
*****
![](https://img.kancloud.cn/f7/eb/f7eb2727b4f2e94ced5c19c2b456961c_1046x700.png)
![](https://img.kancloud.cn/c4/03/c403e1b567c01420fc65d2c80a825421_1169x703.png)
![](https://img.kancloud.cn/3d/09/3d09c3c5778afc0670165681aff306ae_1169x667.png)
![](https://img.kancloud.cn/3e/e3/3ee37fb6cad5e14fcdbe1f4897ad1a41_1049x681.png)
*****
![](https://img.kancloud.cn/41/a9/41a91c8ff95f0e3638c1881dd4c48fcc_927x658.png)
![](https://img.kancloud.cn/d5/e8/d5e84bde14d521f8e61e314e3b34f9f6_937x698.png)