ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
## 向量点积的几何意义 **向量点积代数定义** ![](https://img.kancloud.cn/ae/d4/aed48d388925d1ce9c7789d175497a77_1316x646.png) ![](https://img.kancloud.cn/49/12/4912fc1ec444c35c98fcb9c6884d3bab_1153x689.png) ![](https://img.kancloud.cn/4b/69/4b69f7b02581d20c493faed76821d612_1154x716.png) ![](https://img.kancloud.cn/73/5a/735a7307ecf7cdf4e4d42717256498be_1029x707.png) 根据对称性,v和w互相投射结果都一样 ![](https://img.kancloud.cn/86/dc/86dc8ccbb3bc9ee4136e88b75bf465e8_1226x574.png) ![](https://img.kancloud.cn/76/ee/76ee00f4e69fd78093e5e3b3e44801f2_1138x671.png) ***** ![](https://img.kancloud.cn/ff/67/ff675ba7935d29ae4664bed75f428dac_1219x300.png) ![](https://img.kancloud.cn/c7/29/c729e38ab24a3554cc504f37e6435661_1249x718.png) ![](https://img.kancloud.cn/d3/01/d3012760e61c192fee73161161bdda3a_1161x688.png) ***** **点积的代数定义** ![](https://img.kancloud.cn/27/b7/27b7ab733a2be001ba86d5376e1db9d8_1201x325.png) ![](https://img.kancloud.cn/39/4d/394d49e731c90a3cb9fa9dd30f0af03e_1298x662.png) ***** **1*2矩阵的几何意义** 这个矩阵是一个线性变换,表示二维空间的两个基向量i和j通过线性变换,两个基向量落在一个一维数轴上,i和j的坐标对应与x轴重合的数轴的2和1两个点 ![](https://img.kancloud.cn/e1/2a/e12a254285f3dce2b8a16fd01824ad0a_1343x598.png) 对一个向量向量进行[1 -2]的线性变换,最后向量与1*2矩阵的乘积为2。因为i落在1上,j落在-2上。该向量由4个i和3个j合成,如下图,该向量的x方向分量落在4上,y方向分量落在-6上,4+(-6) = -2 ![](https://img.kancloud.cn/3f/df/3fdfd984979796d0e18bbdb46a7aeced_1337x626.png) ![](https://img.kancloud.cn/fd/9b/fd9bf3e0b289aecd3e70a7653f524c0f_1346x614.png) ![](https://img.kancloud.cn/a2/73/a27304c95712613f74b46da5eb741b8e_1290x574.png) **该变换根据以下线性规则:** ![](https://img.kancloud.cn/ff/3e/ff3e390afe6bf32139e860ff71cd1347_1291x307.png) ***** ![](https://img.kancloud.cn/41/2f/412f88e21e213b8ed04a9692662323f2_1334x711.png) ![](https://img.kancloud.cn/3b/03/3b036e480d9010287014a83b4973023e_1257x684.png) ![](https://img.kancloud.cn/5c/05/5c05cb740567fd3754b75c0c51ed2c29_1308x715.png) ![](https://img.kancloud.cn/7c/64/7c64b8b264f6e2f67a3e06fb05a290c1_1288x680.png) ![](https://img.kancloud.cn/b2/eb/b2ebb5273ec6cbba975cfb74f77b2732_1309x690.png) ![](https://img.kancloud.cn/bc/d2/bcd23e07beed3ee1861c972657d19e31_1237x724.png) ![](https://img.kancloud.cn/eb/cf/ebcfec98c0ce19a3b2a89433627be246_1091x693.png) ![](https://img.kancloud.cn/ca/fb/cafb052d8f8116d2d728a6a3e4e84c94_1049x665.png) ***** ![](https://img.kancloud.cn/37/ee/37ee54e07f89125e473dec8a1cb336e1_1323x605.png) ***** 基向量u的坐标为[ux uy] , ux与uy也是基向量i与基向量j投影在基向量上的值(根据作图,对偶性可证)。 i与u的点积=ux*1(基向量u的长度)=ux, j与u的点积=uy*1(基向量u的长度) , ux+uy 等于![](https://img.kancloud.cn/3f/2c/3f2c704e4c096e16d5dca51c4e4786fe_43x54.png) * (基向量u),根据下图的原则 : **1.投影是线性的变换** ![](https://img.kancloud.cn/b2/eb/b2ebb5273ec6cbba975cfb74f77b2732_1309x690.png) **2. 一个向量的线性变换与它分量变换的和相同** ![](https://img.kancloud.cn/ff/3e/ff3e390afe6bf32139e860ff71cd1347_1291x307.png) **向量相等,长度一样,方向一样** ***** 任一一向量v 都可以看做n*u(这个向量方向上的基向量),坐标为(n*ux,n*uy)。ux和uy为二维基向量i和j的投影。 [n*ux , n*ny] * ![](https://img.kancloud.cn/c1/19/c1197d187b5a33406fea8933a03fe196_35x58.png) , 那么向量 ![](https://img.kancloud.cn/c1/19/c1197d187b5a33406fea8933a03fe196_35x58.png) 在 向量v上投影后的数值为=》a*ux*n+b*uy*n,所以 ![](https://img.kancloud.cn/6c/5a/6c5a3e6748d41e35abaa0834edafcbd8_712x412.png) ![](https://img.kancloud.cn/96/ee/96eef7b48a5df044f3864f3e45767196_724x312.png)