_**Java虚拟机规范定义的许多规则中的一条:所有对基本类型的操作除了某些对long类型和double类型的操作之外,都是原子级的;**_
> 当线程把主存中的 long/double类型的值读到线程内存中时,可能是两次32位值的写操作,显而易见,如果几个线程同时操作,那么就可能会出现高低2个32位值出错的情况发生。即long,double高低位问题,非线程安全
举例说明:
即如有一个long类型的field字段,某个线程正在执行 field = 123L ,而同时有另一个线程正在执行 field = 456L,这样的指定操作之后field的值会是什么,是无法保证的。也许是123L,也可能是456L,或许是0L,甚至还可能是31415926L
### JVM内存模型中定义了8种原子操作
1. lock:将一个变量标识为被一个线程独占状态
2. unclock:将一个变量从独占状态释放出来,释放后的变量才可以被其他线程锁定
3. read:将一个变量的值从主内存传输到工作内存中,以便随后的load操作
4. load:把read操作从主内存中得到的变量值放入工作内存的变量的副本中
5. use:把工作内存中的一个变量的值传给执行引擎,每当虚拟机遇到一个使用到变量的指令时都会使用该指令
6. assign:把一个从执行引擎接收到的值赋给工作内存中的变量,每当虚拟机遇到一个给变量赋值的指令时,都要使用该操作
7. store:把工作内存中的一个变量的值传递给主内存,以便随后的write操作
8. write:把store操作从工作内存中得到的变量的值写到主内存中的变量
对于32位操作系统来说单次次操作能处理的最长长度为32bit,而long类型8字节64bit,所以对long的读写都要两条指令才能完成\(即每次读写64bit中的32bit\);如果JVM要保证long和double读写的原子性,势必要做额外的处理
```
public class LongAtomTest implements Runnable {
private static long field = 0;
private volatile long value;
public long getValue() {
return value;
}
public void setValue(long value) {
this.value = value;
}
public LongAtomTest(long value) {
this.setValue(value);
}
@Override
public void run() {
int i = 0;
while (i < 100000) {
LongAtomTest.field = this.getValue();
i++;
long temp = LongAtomTest.field;
if (temp != 1L && temp != -1L) {
System.out.println("出现错误结果" + temp);
System.exit(0);
}
}
System.out.println("运行正确");
}
public static void main(String[] args) throws InterruptedException {
// 获取并打印当前JVM是32位还是64位的
String arch = System.getProperty("sun.arch.data.model");
System.out.println(arch+"-bit");
LongAtomTest t1 = new LongAtomTest(1);
LongAtomTest t2 = new LongAtomTest(-1);
Thread T1 = new Thread(t1);
Thread T2 = new Thread(t2);
T1.start();
T2.start();
T1.join();
T2.join();
}
}
```
以上代码在32位JVM上和64位JVM上运行结果将不一致
从程序得到的结果来看,32位的HotSpot没有把long和double的读写实现为原子操作。 在读写的时候,分成两次操作,每次读写32位。因为采用了这种策略,所以64位的long和double的读与写都不是原子操作
### 结论
* 对于64位的long和double,如果没有被volatile修饰,那么对其操作可以不是原子的。在操作的时候,可以分成两步,每次对32位操作;
* 如果使用volatile修饰long和double,那么其读写都是原子操作;
* 在实现JVM时,可以自由选择是否把读写long和double作为原子操作;
* java中对于long和double类型的写操作不是原子操作,而是分成了两个32位的写操作。读操作是否也分成了两个32位的读呢?在JSR-133之前的规范中,读也是分成了两个32位的读,但是从JSR-133规范开始,即JDK5开始,读操作也都具有原子性;
* java中对于其他类型的读写操作都是原子操作\(除long和double类型以外\);
* 对于引用类型的读写操作都是原子操作,无论引用类型的实际类型是32位的值还是64位的值;
* 对于long类型的不恰当操作可能读取到从未出现过的值。而对于int的不恰当操作则可能读取到旧的值;
- 简介
- 概述
- 进程vs线程
- 资源限制
- 有关并行的两个定律
- 线程同步和阻塞
- 线程阻塞
- 线程的特性
- 守护线程
- 线程异常
- Thread
- 线程状态
- 线程中断
- wait¬ify
- suspend&resume
- join&yield
- notify¬ifyAll
- Thread.sleep
- 线程任务
- Runnable
- Callable
- Future模式
- FutureTask
- 线程实现方式
- 内核线程实现
- 用户线程实现
- 混合实现
- Java线程的实现
- java与协程
- 纤程-Fiber
- 线程调度
- 多线程协作方式
- 阻塞
- 放弃
- 休眠
- 连接线程
- 线程估算公式
- 线程活跃性
- 死锁
- 线程安全性
- 对象的发布与逸出
- 构造方法溢出
- 线程封闭
- 对象的可变性
- 原子性
- 原子操作
- CPU原子操作原理
- 总线锁
- 缓存锁
- JAVA如何实现原子操作
- long和double读写操作原子性
- Adder和Accumulator
- 线程性能
- 同步工具类
- 闭锁
- CountDownLatch
- FutureTask
- 信号量
- 栅栏
- CyclicBarrier
- Exchanger
- 并发编程
- volatile
- synchronized
- 无锁
- 偏向锁
- 轻量级锁
- 锁的优缺点对比
- 锁升级
- 锁消除
- Monitor
- synchronized语法
- Mutex Lock
- synchronized实践问题
- synchronized&ReentrantLock
- Lock
- ReentrantLock
- Condition
- 读写锁
- ReadWriteLock
- StampedLock
- 线程池
- Executor
- ExecutorService
- Executors
- ThreadPoolExecutor
- RejectedExecutionHandler
- ThreadFactory
- 线程池大小公式
- 动态调整线程池大小
- Fork/Join框架
- ForkJoinPool
- CompletableFuture
- JUC并发工具包
- LockSupport
- 延时任务与周期任务
- Timer
- TimerTask
- 异构任务并行化
- CompletionService
- volatile和synchronized比较
- 锁优化
- 锁相关概念
- 悲观锁(排它锁)
- 乐观锁
- 自旋锁
- 乐观锁vs悲观锁
- JVM锁优化-锁消除
- ThreadLocal
- InheritableThreadLocal
- TransmittableThreadLocal
- ThreadLocalRandom
- 无锁
- AtomicInteger
- Unsafe
- AtomicReference
- AtomicStampedReference
- AtomicIntegerArray
- AtomicIntegerFieldUpdater
- 无锁Vector
- LongAdder
- LongAccumulator
- 常见锁类型
- 悲观锁&独占锁
- 乐观锁
- 乐观锁vs悲观锁
- 自旋锁vs适应性自旋锁
- 公平锁vs非公平锁
- 可重入锁vs非可重入锁
- 独享锁vs共享锁
- 互斥锁
- CAS
- AQS介绍
- AQS深入剖析
- AQS框架
- AQS核心思想
- AQS数据结构
- 同步状态State
- ReentrantLock vs AQS
- AQS与ReentrantLock的关联
- ReentrantLock具体实现
- 线程加入等待队列
- 等待队列中线程出队列时机
- 如何解锁
- 中断恢复后的执行流程
- ReentrantLock的可重入应用
- JUC中的应用场景
- 自定义同步工具
- CLH锁
- 并发框架
- Akka
- Disruptor-无锁缓存框架
- 常见面试题
- 两个线程交替打印A和B
- 附录