💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
### 如何解锁 我们已经剖析了加锁过程中的基本流程,接下来再对解锁的基本流程进行分析。由于ReentrantLock在解锁的时候,并不区分公平锁和非公平锁,所以我们直接看解锁的源码: ~~~ // java.util.concurrent.locks.ReentrantLock public void unlock() { sync.release(1); } ~~~ 可以看到,本质释放锁的地方,是通过框架来完成的。 ~~~ // java.util.concurrent.locks.AbstractQueuedSynchronizer public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } ~~~ 在ReentrantLock里面的公平锁和非公平锁的父类Sync定义了可重入锁的释放锁机制。 ~~~ // java.util.concurrent.locks.ReentrantLock.Sync // 方法返回当前锁是不是没有被线程持有 protected final boolean tryRelease(int releases) { // 减少可重入次数 int c = getState() - releases; // 当前线程不是持有锁的线程,抛出异常 if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; // 如果持有线程全部释放,将当前独占锁所有线程设置为null,并更新state if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; } ~~~ 我们来解释下述源码: ~~~ // java.util.concurrent.locks.AbstractQueuedSynchronizer public final boolean release(int arg) { // 上边自定义的tryRelease如果返回true,说明该锁没有被任何线程持有 if (tryRelease(arg)) { // 获取头结点 Node h = head; // 头结点不为空并且头结点的waitStatus不是初始化节点情况,解除线程挂起状态 if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } ~~~ 这里的判断条件为什么是h != null && h.waitStatus != 0? > h == null Head还没初始化。初始情况下,head == null,第一个节点入队,Head会被初始化一个虚拟节点。所以说,这里如果还没来得及入队,就会出现head == null 的情况。 > > h != null && waitStatus == 0 表明后继节点对应的线程仍在运行中,不需要唤醒。 > > h != null && waitStatus < 0 表明后继节点可能被阻塞了,需要唤醒。 再看一下unparkSuccessor方法: ~~~ // java.util.concurrent.locks.AbstractQueuedSynchronizer private void unparkSuccessor(Node node) { // 获取头结点waitStatus int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); // 获取当前节点的下一个节点 Node s = node.next; // 如果下个节点是null或者下个节点被cancelled,就找到队列最开始的非cancelled的节点 if (s == null || s.waitStatus > 0) { s = null; // 就从尾部节点开始找,到队首,找到队列第一个waitStatus<0的节点。 for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } // 如果当前节点的下个节点不为空,而且状态<=0,就把当前节点unpark if (s != null) LockSupport.unpark(s.thread); } ~~~ 为什么要从后往前找第一个非Cancelled的节点呢?原因如下。 之前的addWaiter方法: ~~~ // java.util.concurrent.locks.AbstractQueuedSynchronizer private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; } ~~~ 我们从这里可以看到,节点入队并不是原子操作,也就是说,node.prev = pred; compareAndSetTail(pred, node) 这两个地方可以看作Tail入队的原子操作,但是此时pred.next = node;还没执行,如果这个时候执行了unparkSuccessor方法,就没办法从前往后找了,所以需要从后往前找。还有一点原因,在产生CANCELLED状态节点的时候,先断开的是Next指针,Prev指针并未断开,因此也是必须要从后往前遍历才能够遍历完全部的Node。 综上所述,如果是从前往后找,由于极端情况下入队的非原子操作和CANCELLED节点产生过程中断开Next指针的操作,可能会导致无法遍历所有的节点。所以,唤醒对应的线程后,对应的线程就会继续往下执行。继续执行acquireQueued方法以后,中断如何处理?