### AQS(AbstractQueuedSynchronizer)
AQS(AbstractQueuedSynchronizer),AQS是JDK下提供的一套用于实现基于FIFO等待队列的阻塞锁和相关的同步器的一个同步框架。这个抽象类被设计为作为一些可用原子int值来表示状态的同步器的基类。如果你有看过类似 CountDownLatch 类的源码实现,会发现其内部有一个继承了 AbstractQueuedSynchronizer 的内部类 Sync;可见CountDownLatch 是基于AQS框架来实现的一个同步器
如JDK的文档中所说,使用AQS来实现一个同步器需要覆盖实现如下几个方法,并且使用getState,setState,compareAndSetState这几个方法来设置获取状态
基于AQS构建的同步器:
* ReentrantLock
* ReadWriteLock
* Semaphore
* ReentrantReadWriteLock
* CountDownLatch
* SynchronousQueue
* FutureTask
```
public abstract class AbstractQueuedSynchronizer extends
AbstractOwnableSynchronizer implements java.io.Serializable {
//等待队列的头节点
private transient volatile Node head;
//等待队列的尾节点
private transient volatile Node tail;
//同步状态
private volatile int state;
protected final int getState() { return state;}
protected final void setState(int newState) { state = newState;}
...
}
```
队列同步器AQS是用来构建锁或其他同步组件的基础框架,内部使用一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作,其中内部状态state,等待队列的头节点head和尾节点head,都是通过volatile修饰,保证了多线程之间的可见
### 实现原理
AQS原理:AQS就是一个同步器,要做的事情就相当于一个锁,所以就会有两个动作:一个是获取,一个是释放。获取释放的时候该有一个东西来记住他是被用还是没被用,这个东西就是一个状态。如果锁被获取了,也就是被用了,还有很多其他的要来获取锁,总不能给全部拒绝了,这时候就需要他们排队,这里就需要一个队列。这大概就清楚了AQS的主要构成了:
* 获取和释放两个动作
* 同步状态(原子操作)
* 阻塞队列
CLH同步队列是一个FIFO双向队列,AQS依赖它来完成同步状态的管理,当前线程如果获取同步状态失败时,AQS则会将当前线程等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态,在CLH同步队列中,一个节点表示一个线程,它保存着线程的引用(thread)、状态(waitStatus)、前驱节点(prev)、后继节点(next),其定义如下:
```
static final class Node {
/** 共享 */
static final Node SHARED = new Node();
/** 独占 */
static final Node EXCLUSIVE = null;
static final int CANCELLED = 1;
static final int SIGNAL = -1;
static final int CONDITION = -2;
static final int PROPAGATE = -3;
volatile int waitStatus;
/** 前驱节点 */
volatile Node prev;
/** 后继节点 */
volatile Node next;
/** 获取同步状态的线程 */
volatile Thread thread;
Node nextWaiter;
final boolean isShared() {
return nextWaiter == SHARED;
}
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() { // Used to establish initial head or SHARED marker
}
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
```
结构图:
![](https://img.kancloud.cn/56/71/5671b09de38fbc185c766ff19b54ba08_525x88.png)
黄色节点是默认head节点,其实是一个空节点,我觉得可以理解成代表当前持有锁的线程,每当有线程竞争失败,都是插入到队列的尾节点,tail节点始终指向队列中的最后一个元素。
每个节点中, 除了存储了当前线程,前后节点的引用以外,还有一个waitStatus变量,用于描述节点当前的状态。多线程并发执行时,队列中会有多个节点存在,这个waitStatus其实代表对应线程的状态:有的线程可能获取锁因为某些原因放弃竞争;有的线程在等待满足条件,满足之后才能执行等等。一共有4中状态:
* CANCELLED 取消状态
* SIGNAL 等待触发状态
* CONDITION 等待条件状态
* PROPAGATE 状态需要向后传播
等待队列是FIFO先进先出,只有前一个节点的状态为SIGNAL时,当前节点的线程才能被挂起;
### 线程获取锁过程
下列步骤中线程A和B进行竞争:
1.线程A执行CAS执行成功,state值被修改并返回true,线程A继续执行。
2.线程A执行CAS指令失败,说明线程B也在执行CAS指令且成功,这种情况下线程A会执行步骤3。
3.生成新Node节点node,并通过CAS指令插入到等待队列的队尾(同一时刻可能会有多个Node节点插入到等待队列中),如果tail节点为空,则将head节点指向一个空节点(代表线程B),具体实现如下:
```
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
```
4.node插入到队尾后,该线程不会立马挂起,会进行自旋操作。因为在node的插入过程,线程B(即之前没有阻塞的线程)可能已经执行完成,所以要判断该node的前一个节点pred是否为head节点(代表线程B),如果pred == head,表明当前节点是队列中第一个“有效的”节点,因此再次尝试tryAcquire获取锁:
a)如果成功获取到锁,表明线程B已经执行完成,线程A不需要挂起;
b)如果获取失败,表示线程B还未完成,至少还未修改state值。跳到步骤5
```
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
```
5.前面我们已经说过只有前一个节点pred的线程状态为SIGNAL时,当前节点的线程才能被挂起;
a)如果pred的waitStatus == 0,则通过CAS指令修改waitStatus为Node.SIGNAL;
b)如果pred的waitStatus > 0,表明pred的线程状态CANCELLED,需从队列中删除;
c)如果pred的waitStatus为Node.SIGNAL,则通过LockSupport.park\(\)方法把线程A挂起,并等待被唤醒,被唤醒后进入步骤6;
```
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
```
6.线程每次被唤醒时,都要进行中断检测,如果发现当前线程被中断,那么抛出InterruptedException并退出循环。从无限循环的代码可以看出,并不是被唤醒的线程一定能获得锁,必须调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓;
### 线程释放锁过程
1. 如果头结点head的waitStatus值为-1,则用CAS指令重置为0;
2. 找到waitStatus值小于0的节点s,通过LockSupport.unpark\(s.thread\)唤醒线程。
```
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
```
【参考资料】
[http://cxis.me/2017/03/23/JUC中AQS简介/](http://cxis.me/2017/03/23/JUC中AQS简介/)
https://www.jianshu.com/p/d8eeb31bee5c
- 简介
- 概述
- 进程vs线程
- 资源限制
- 有关并行的两个定律
- 线程同步和阻塞
- 线程阻塞
- 线程的特性
- 守护线程
- 线程异常
- Thread
- 线程状态
- 线程中断
- wait¬ify
- suspend&resume
- join&yield
- notify¬ifyAll
- Thread.sleep
- 线程任务
- Runnable
- Callable
- Future模式
- FutureTask
- 线程实现方式
- 内核线程实现
- 用户线程实现
- 混合实现
- Java线程的实现
- java与协程
- 纤程-Fiber
- 线程调度
- 多线程协作方式
- 阻塞
- 放弃
- 休眠
- 连接线程
- 线程估算公式
- 线程活跃性
- 死锁
- 线程安全性
- 对象的发布与逸出
- 构造方法溢出
- 线程封闭
- 对象的可变性
- 原子性
- 原子操作
- CPU原子操作原理
- 总线锁
- 缓存锁
- JAVA如何实现原子操作
- long和double读写操作原子性
- Adder和Accumulator
- 线程性能
- 同步工具类
- 闭锁
- CountDownLatch
- FutureTask
- 信号量
- 栅栏
- CyclicBarrier
- Exchanger
- 并发编程
- volatile
- synchronized
- 无锁
- 偏向锁
- 轻量级锁
- 锁的优缺点对比
- 锁升级
- 锁消除
- Monitor
- synchronized语法
- Mutex Lock
- synchronized实践问题
- synchronized&ReentrantLock
- Lock
- ReentrantLock
- Condition
- 读写锁
- ReadWriteLock
- StampedLock
- 线程池
- Executor
- ExecutorService
- Executors
- ThreadPoolExecutor
- RejectedExecutionHandler
- ThreadFactory
- 线程池大小公式
- 动态调整线程池大小
- Fork/Join框架
- ForkJoinPool
- CompletableFuture
- JUC并发工具包
- LockSupport
- 延时任务与周期任务
- Timer
- TimerTask
- 异构任务并行化
- CompletionService
- volatile和synchronized比较
- 锁优化
- 锁相关概念
- 悲观锁(排它锁)
- 乐观锁
- 自旋锁
- 乐观锁vs悲观锁
- JVM锁优化-锁消除
- ThreadLocal
- InheritableThreadLocal
- TransmittableThreadLocal
- ThreadLocalRandom
- 无锁
- AtomicInteger
- Unsafe
- AtomicReference
- AtomicStampedReference
- AtomicIntegerArray
- AtomicIntegerFieldUpdater
- 无锁Vector
- LongAdder
- LongAccumulator
- 常见锁类型
- 悲观锁&独占锁
- 乐观锁
- 乐观锁vs悲观锁
- 自旋锁vs适应性自旋锁
- 公平锁vs非公平锁
- 可重入锁vs非可重入锁
- 独享锁vs共享锁
- 互斥锁
- CAS
- AQS介绍
- AQS深入剖析
- AQS框架
- AQS核心思想
- AQS数据结构
- 同步状态State
- ReentrantLock vs AQS
- AQS与ReentrantLock的关联
- ReentrantLock具体实现
- 线程加入等待队列
- 等待队列中线程出队列时机
- 如何解锁
- 中断恢复后的执行流程
- ReentrantLock的可重入应用
- JUC中的应用场景
- 自定义同步工具
- CLH锁
- 并发框架
- Akka
- Disruptor-无锁缓存框架
- 常见面试题
- 两个线程交替打印A和B
- 附录