企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
### AQS(AbstractQueuedSynchronizer) AQS(AbstractQueuedSynchronizer),AQS是JDK下提供的一套用于实现基于FIFO等待队列的阻塞锁和相关的同步器的一个同步框架。这个抽象类被设计为作为一些可用原子int值来表示状态的同步器的基类。如果你有看过类似 CountDownLatch 类的源码实现,会发现其内部有一个继承了 AbstractQueuedSynchronizer 的内部类 Sync;可见CountDownLatch 是基于AQS框架来实现的一个同步器 如JDK的文档中所说,使用AQS来实现一个同步器需要覆盖实现如下几个方法,并且使用getState,setState,compareAndSetState这几个方法来设置获取状态 基于AQS构建的同步器: * ReentrantLock * ReadWriteLock * Semaphore * ReentrantReadWriteLock * CountDownLatch * SynchronousQueue * FutureTask ``` public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable { //等待队列的头节点 private transient volatile Node head; //等待队列的尾节点 private transient volatile Node tail; //同步状态 private volatile int state; protected final int getState() { return state;} protected final void setState(int newState) { state = newState;} ... } ``` 队列同步器AQS是用来构建锁或其他同步组件的基础框架,内部使用一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作,其中内部状态state,等待队列的头节点head和尾节点head,都是通过volatile修饰,保证了多线程之间的可见 ### 实现原理 AQS原理:AQS就是一个同步器,要做的事情就相当于一个锁,所以就会有两个动作:一个是获取,一个是释放。获取释放的时候该有一个东西来记住他是被用还是没被用,这个东西就是一个状态。如果锁被获取了,也就是被用了,还有很多其他的要来获取锁,总不能给全部拒绝了,这时候就需要他们排队,这里就需要一个队列。这大概就清楚了AQS的主要构成了: * 获取和释放两个动作 * 同步状态(原子操作) * 阻塞队列 CLH同步队列是一个FIFO双向队列,AQS依赖它来完成同步状态的管理,当前线程如果获取同步状态失败时,AQS则会将当前线程等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态,在CLH同步队列中,一个节点表示一个线程,它保存着线程的引用(thread)、状态(waitStatus)、前驱节点(prev)、后继节点(next),其定义如下: ``` static final class Node { /** 共享 */ static final Node SHARED = new Node(); /** 独占 */ static final Node EXCLUSIVE = null; static final int CANCELLED = 1; static final int SIGNAL = -1; static final int CONDITION = -2; static final int PROPAGATE = -3; volatile int waitStatus; /** 前驱节点 */ volatile Node prev; /** 后继节点 */ volatile Node next; /** 获取同步状态的线程 */ volatile Thread thread; Node nextWaiter; final boolean isShared() { return nextWaiter == SHARED; } final Node predecessor() throws NullPointerException { Node p = prev; if (p == null) throw new NullPointerException(); else return p; } Node() { // Used to establish initial head or SHARED marker } Node(Thread thread, Node mode) { // Used by addWaiter this.nextWaiter = mode; this.thread = thread; } Node(Thread thread, int waitStatus) { // Used by Condition this.waitStatus = waitStatus; this.thread = thread; } } ``` 结构图: ![](https://img.kancloud.cn/56/71/5671b09de38fbc185c766ff19b54ba08_525x88.png) 黄色节点是默认head节点,其实是一个空节点,我觉得可以理解成代表当前持有锁的线程,每当有线程竞争失败,都是插入到队列的尾节点,tail节点始终指向队列中的最后一个元素。 每个节点中, 除了存储了当前线程,前后节点的引用以外,还有一个waitStatus变量,用于描述节点当前的状态。多线程并发执行时,队列中会有多个节点存在,这个waitStatus其实代表对应线程的状态:有的线程可能获取锁因为某些原因放弃竞争;有的线程在等待满足条件,满足之后才能执行等等。一共有4中状态: * CANCELLED 取消状态 * SIGNAL 等待触发状态 * CONDITION 等待条件状态 * PROPAGATE 状态需要向后传播 等待队列是FIFO先进先出,只有前一个节点的状态为SIGNAL时,当前节点的线程才能被挂起; ### 线程获取锁过程 下列步骤中线程A和B进行竞争: 1.线程A执行CAS执行成功,state值被修改并返回true,线程A继续执行。 2.线程A执行CAS指令失败,说明线程B也在执行CAS指令且成功,这种情况下线程A会执行步骤3。 3.生成新Node节点node,并通过CAS指令插入到等待队列的队尾(同一时刻可能会有多个Node节点插入到等待队列中),如果tail节点为空,则将head节点指向一个空节点(代表线程B),具体实现如下: ``` private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; } private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } } ``` 4.node插入到队尾后,该线程不会立马挂起,会进行自旋操作。因为在node的插入过程,线程B(即之前没有阻塞的线程)可能已经执行完成,所以要判断该node的前一个节点pred是否为head节点(代表线程B),如果pred == head,表明当前节点是队列中第一个“有效的”节点,因此再次尝试tryAcquire获取锁: a)如果成功获取到锁,表明线程B已经执行完成,线程A不需要挂起; b)如果获取失败,表示线程B还未完成,至少还未修改state值。跳到步骤5 ``` final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } } ``` 5.前面我们已经说过只有前一个节点pred的线程状态为SIGNAL时,当前节点的线程才能被挂起; a)如果pred的waitStatus == 0,则通过CAS指令修改waitStatus为Node.SIGNAL; b)如果pred的waitStatus &gt; 0,表明pred的线程状态CANCELLED,需从队列中删除; c)如果pred的waitStatus为Node.SIGNAL,则通过LockSupport.park\(\)方法把线程A挂起,并等待被唤醒,被唤醒后进入步骤6; ``` private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus; if (ws == Node.SIGNAL) /* * This node has already set status asking a release * to signal it, so it can safely park. */ return true; if (ws > 0) { /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; } ``` 6.线程每次被唤醒时,都要进行中断检测,如果发现当前线程被中断,那么抛出InterruptedException并退出循环。从无限循环的代码可以看出,并不是被唤醒的线程一定能获得锁,必须调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓; ### 线程释放锁过程 1. 如果头结点head的waitStatus值为-1,则用CAS指令重置为0; 2. 找到waitStatus值小于0的节点s,通过LockSupport.unpark\(s.thread\)唤醒线程。 ``` private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread); } ``` 【参考资料】 [http://cxis.me/2017/03/23/JUC中AQS简介/](http://cxis.me/2017/03/23/JUC中AQS简介/) https://www.jianshu.com/p/d8eeb31bee5c