`std`默认被链接到每个Rust包装箱中。在一些情况下,这是不合适的,并且可以通过在包装箱上加入`#![no_std]`属性来避免这一点。
~~~
// a minimal library
#![crate_type="lib"]
#![feature(no_std)]
#![no_std]
~~~
很明显不光库可以使用这一点:你可以在可执行文件上使用`#[no_std]`,控制程序入口点有两种可能的方式:`#[start]`属性,或者用你自己的去替换C语言默认的`main`函数。
被标记为`#[start]`的函数传递的参数格式与C一致:
~~~
#![feature(lang_items, start, no_std)]
#![no_std]
// Pull in the system libc library for what crt0.o likely requires
extern crate libc;
// Entry point for this program
#[start]
fn start(_argc: isize, _argv: *const *const u8) -> isize {
0
}
// These functions and traits are used by the compiler, but not
// for a bare-bones hello world. These are normally
// provided by libstd.
#[lang = "stack_exhausted"] extern fn stack_exhausted() {}
#[lang = "eh_personality"] extern fn eh_personality() {}
#[lang = "panic_fmt"] fn panic_fmt() -> ! { loop {} }
~~~
要覆盖编译器插入的`main`函数,你必须使用`#![no_main]`并通过正确的ABI和正确的名字来创建合适的函数,这也需要需要覆盖编译器的命名改编:
~~~
#![feature(no_std)]
#![no_std]
#![no_main]
#![feature(lang_items, start)]
extern crate libc;
#[no_mangle] // ensure that this symbol is called `main` in the output
pub extern fn main(argc: i32, argv: *const *const u8) -> i32 {
0
}
#[lang = "stack_exhausted"] extern fn stack_exhausted() {}
#[lang = "eh_personality"] extern fn eh_personality() {}
#[lang = "panic_fmt"] fn panic_fmt() -> ! { loop {} }
~~~
目前编译器对能够被可执行文件调用的符号做了一些假设。正常情况下,这些函数是由标准库提供的,不过没有它你就必须定义你自己的了。
这三个函数中的第一个`stack_exhausted`,当检测到栈溢出时被调用。这个函数对于如何被调用和应该干什么有一些限制,不顾如果栈限制寄存器没有被维护则一个线程可以有”无限的栈“,这种情况下这个函数不应该被触发。
第二个函数,`eh_personality`,被编译器的错误机制使用。它通常映射到GCC的特性函数上(查看[libstd实现](http://doc.rust-lang.org/std/rt/unwind/)来获取更多信息),不过对于不会触发恐慌的包装箱可以确定这个函数不会被调用。最后一个函数,`panic_fmt`,也被编译器的错误机制使用。
## 使用libcore
> **注意**:核心库的结构是不稳定的,建议在任何可能的情况下使用标准库。
通过上面的计数,我们构造了一个少见的运行Rust代码的可执行程序。标准库提供了很多功能,然而,这是Rust的生产力所需要的。如果标准库是不足的话,那么可以使用被设计为标准库替代的[libcore](http://doc.rust-lang.org/core/)。
核心库只有很少的依赖并且比标准库可移植性更强。另外,核心库包含编写符合习惯和高效Rust代码的大部分功能。
例如,下面是一个计算由C提供的两个向量的数量积的函数,使用常见的Rust实现。
~~~
#![feature(lang_items, start, no_std, core, libc)]
#![no_std]
extern crate core;
use core::prelude::*;
use core::mem;
#[no_mangle]
pub extern fn dot_product(a: *const u32, a_len: u32,
b: *const u32, b_len: u32) -> u32 {
use core::raw::Slice;
// Convert the provided arrays into Rust slices.
// The core::raw module guarantees that the Slice
// structure has the same memory layout as a &[T]
// slice.
//
// This is an unsafe operation because the compiler
// cannot tell the pointers are valid.
let (a_slice, b_slice): (&[u32], &[u32]) = unsafe {
mem::transmute((
Slice { data: a, len: a_len as usize },
Slice { data: b, len: b_len as usize },
))
};
// Iterate over the slices, collecting the result
let mut ret = 0;
for (i, j) in a_slice.iter().zip(b_slice.iter()) {
ret += (*i) * (*j);
}
return ret;
}
#[lang = "panic_fmt"]
extern fn panic_fmt(args: &core::fmt::Arguments,
file: &str,
line: u32) -> ! {
loop {}
}
#[lang = "stack_exhausted"] extern fn stack_exhausted() {}
#[lang = "eh_personality"] extern fn eh_personality() {}
~~~
注意这里有一个额外的`lang`项与之前的例子不同,`panic_fmt`。它必须由libcore的调用者定义因为核心库声明了恐慌,但没有定义它。`panic_fmt`项是这个包装箱的恐慌定义,并且它必须确保不会返回。
正如你在例子中所看到的,核心库尝试在所有情况下提供Rust的功能,不管平台的要求如何。另外一些库,例如`liballoc`,为libcore增加了进行其它平台相关假设的功能,不过这依旧比标准库更有可移植性。
- 前言
- 1.介绍
- 2.准备
- 2.1.安装Rust
- 2.2.Hello, world!
- 2.3.Hello, Cargo!
- 3.学习Rust
- 3.1.猜猜看
- 3.2.哲学家就餐问题
- 3.3.其它语言中的Rust
- 4.高效Rust
- 4.1.栈和堆
- 4.2.测试
- 4.3.条件编译
- 4.4.文档
- 4.5.迭代器
- 4.6.并发
- 4.7.错误处理
- 4.8.外部语言接口
- 4.9.Borrow 和 AsRef
- 4.10.发布途径
- 5.语法和语义
- 5.1.变量绑定
- 5.2.函数
- 5.3.原生类型
- 5.4.注释
- 5.5.If语句
- 5.6.for循环
- 5.7.while循环
- 5.8.所有权
- 5.9.引用和借用
- 5.10.生命周期
- 5.11.可变性
- 5.12.结构体
- 5.13.枚举
- 5.14.匹配
- 5.15.模式
- 5.16.方法语法
- 5.17.Vectors
- 5.18.字符串
- 5.19.泛型
- 5.20.Traits
- 5.21.Drop
- 5.22.if let
- 5.23.trait对象
- 5.24.闭包
- 5.25.通用函数调用语法
- 5.26.包装箱和模块
- 5.27.`const`和`static`
- 5.28.属性
- 5.29.`type`别名
- 5.30.类型转换
- 5.31.关联类型
- 5.32.不定长类型
- 5.33.运算符和重载
- 5.34.`Deref`强制多态
- 5.35.宏
- 5.36.裸指针
- 6.Rust开发版
- 6.1.编译器插件
- 6.2.内联汇编
- 6.3.不使用标准库
- 6.4.固有功能
- 6.5.语言项
- 6.6.链接参数
- 6.7.基准测试
- 6.8.装箱语法和模式
- 6.9.切片模式
- 6.10.关联常量
- 7.词汇表
- 8.学院派研究
- 勘误