# 19.1 计划
> 原文: [http://math.mit.edu/~djk/calculus_beginners/chapter19/section01.html](http://math.mit.edu/~djk/calculus_beginners/chapter19/section01.html)
这种材料不是微分方程课程的替代品,这些课程倾向于提供洞察力和方法,允许对许多重要的微分方程进行代数求解,并提供对无需解决的解决方案行为的深入了解详细地。
我们在这里提供它是因为微分方程中的许多传统课程完全忽略了数值计算,我们希望表明,对于各种微分方程,这些可以通过大量工作完成,而不是超出数值积分所涉及的范围。
我们将首先解决一阶微分方程,然后考虑一个二阶方程,最后一个描述行星运动,它是二阶的并且有两个因变量。 (虽然行星在三维空间中移动,但它们的运动位于一个平面上。我们的因变量则是行星的![](https://img.kancloud.cn/77/90/7790dd0efb4a03a4c876741804d9b559_10x8.gif)和![](https://img.kancloud.cn/6c/70/6c704047d3148fd7a8b563aaf79dd7f4_9x12.gif)坐标,自变量是时间![](https://img.kancloud.cn/64/9c/649cbb0dc497a73d3cb2a543eaaf7933_6x12.gif)。)
它们之间的主要区别在于需要创建的列数。
**“我们”是什么意思。我睡觉的时候你会这样做吗?**
好吧,我会告诉你如何设置一个,你会看到你可以不费吹灰之力地改变方程式并自己解决它们,这给你前几代学生所不知道的力量。
- 第 0 章:为何学习微积分?
- 0.1 你应该知道什么
- 0.2 什么是微积分?我们为什么要研究它?
- 第 1 章:数字
- 1.1 什么是数字?有理数
- 1.2 小数和实数
- 1.3 复数
- 复数运算
- 1.4 可数集(消遣)
- 第 2 章:使用电子表格
- 2.1 什么是电子表格?
- 2.2 斐波纳契数
- 2.3 帕斯卡的三角形
- 2.4 与电子表格集成
- 第 3 章:线性函数
- 3.1 什么是函数?
- 3.2 线性函数
- 3.3 线性
- 第四章:函数的二次型和导数
- 4.1 更复杂的函数
- 4.2 二次函数的斜率
- 第 5 章:有理函数和导数的计算
- 5.1 有理函数的导数
- 第 6 章:指数函数,替换和链规则
- 6.1 最有用函数的导数
- 第 7 章:三角函数及其导数
- 7.1 二维数学
- 7.2 三角学和导数以及加法定理
- 第 8 章:反函数及其导函数
- 8.1 反函数
- 8.2 微分反函数
- 8.3 更多规则
- 第 9 章:数值微分和不可微函数
- 9.1 数值微分
- 9.2 绘制导数图
- 9.3 不可微函数
- 第 10 章:微分的回顾
- 10.1 复习
- 第 11 章:微分在求解方程中的应用
- 11.1 求解方程
- 第 12 章:反导数
- 12.1 反导数
- 第 13 章:曲线下面积;定积分
- 13.1 区域:定义,名称和符号
- 13.2 微积分和确定区域的基本定理
- 13.3 积分的诀窍
- 第 14 章:数值积分
- 14.1 数值积分计划
- 14.2 积分的“规则”
- 14.3 为什么这些规则有效?
- 第 15 章:平行数字的面积和体积;行列式
- 15.1 有符号面积和体积
- 15.2 表示平行边的图形
- 15.3 行列式的属性
- 15.4 求解行列式
- 15.5 用于求解电子表格中的行列式的爱丽丝梦游仙境方法
- 第 16 章一些纯数学
- 16.1 极限和点集拓扑简介
- 16.2 紧集
- 16.3 杂注
- 16.4 Lebesgue 积分
- 第 17 章:物理的建模应用
- 17.1 垂直运动建模
- 17.2 弹簧建模(谐波振荡器)
- 17.3 受迫振荡
- 17.4 简单电路
- 第 18 章捕食者猎物模型
- 18.1 捕食者猎物模型
- 第 19 章:求解微分方程
- 19.1 计划
- 19.2 一阶微分方程
- 19.3 二阶微分方程
- 19.4 行星运动