# 开始
Spark中所有相关功能的入口点是[SQLContext](http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.SQLContext)类或者它的子类,创建一个SQLContext的所有需要仅仅是一个SparkContext。
~~~
val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// createSchemaRDD is used to implicitly convert an RDD to a SchemaRDD.
import sqlContext.createSchemaRDD
~~~
除了一个基本的SQLContext,你也能够创建一个HiveContext,它支持基本SQLContext所支持功能的一个超集。它的额外的功能包括用更完整的HiveQL分析器写查询去访问HiveUDFs的能力、从Hive表读取数据的能力。用HiveContext你不需要一个已经存在的Hive开启,SQLContext可用的数据源对HiveContext也可用。HiveContext分开打包是为了避免在Spark构建时包含了所有的Hive依赖。如果对你的应用程序来说,这些依赖不存在问题,Spark 1.2推荐使用HiveContext。以后的稳定版本将专注于为SQLContext提供与HiveContext等价的功能。
用来解析查询语句的特定SQL变种语言可以通过`spark.sql.dialect`选项来选择。这个参数可以通过两种方式改变,一种方式是通过`setConf`方法设定,另一种方式是在SQL命令中通过`SET key=value`来设定。对于SQLContext,唯一可用的方言是“sql”,它是Spark SQL提供的一个简单的SQL解析器。在HiveContext中,虽然也支持"sql",但默认的方言是“hiveql”。这是因为HiveQL解析器更完整。在很多用例中推荐使用“hiveql”。
- Introduction
- 快速上手
- Spark Shell
- 独立应用程序
- 开始翻滚吧!
- 编程指南
- 引入 Spark
- 初始化 Spark
- Spark RDDs
- 并行集合
- 外部数据集
- RDD 操作
- RDD持久化
- 共享变量
- 从这里开始
- Spark Streaming
- 一个快速的例子
- 基本概念
- 关联
- 初始化StreamingContext
- 离散流
- 输入DStreams
- DStream中的转换
- DStream的输出操作
- 缓存或持久化
- Checkpointing
- 部署应用程序
- 监控应用程序
- 性能调优
- 减少批数据的执行时间
- 设置正确的批容量
- 内存调优
- 容错语义
- Spark SQL
- 开始
- 数据源
- RDDs
- parquet文件
- JSON数据集
- Hive表
- 性能调优
- 其它SQL接口
- 编写语言集成(Language-Integrated)的相关查询
- Spark SQL数据类型
- GraphX编程指南
- 开始
- 属性图
- 图操作符
- Pregel API
- 图构造者
- 顶点和边RDDs
- 图算法
- 例子
- 提交应用程序
- 独立运行Spark
- 在yarn上运行Spark
- Spark配置