企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
# 开始 Spark中所有相关功能的入口点是[SQLContext](http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.SQLContext)类或者它的子类,创建一个SQLContext的所有需要仅仅是一个SparkContext。 ~~~ val sc: SparkContext // An existing SparkContext. val sqlContext = new org.apache.spark.sql.SQLContext(sc) // createSchemaRDD is used to implicitly convert an RDD to a SchemaRDD. import sqlContext.createSchemaRDD ~~~ 除了一个基本的SQLContext,你也能够创建一个HiveContext,它支持基本SQLContext所支持功能的一个超集。它的额外的功能包括用更完整的HiveQL分析器写查询去访问HiveUDFs的能力、从Hive表读取数据的能力。用HiveContext你不需要一个已经存在的Hive开启,SQLContext可用的数据源对HiveContext也可用。HiveContext分开打包是为了避免在Spark构建时包含了所有的Hive依赖。如果对你的应用程序来说,这些依赖不存在问题,Spark 1.2推荐使用HiveContext。以后的稳定版本将专注于为SQLContext提供与HiveContext等价的功能。 用来解析查询语句的特定SQL变种语言可以通过`spark.sql.dialect`选项来选择。这个参数可以通过两种方式改变,一种方式是通过`setConf`方法设定,另一种方式是在SQL命令中通过`SET key=value`来设定。对于SQLContext,唯一可用的方言是“sql”,它是Spark SQL提供的一个简单的SQL解析器。在HiveContext中,虽然也支持"sql",但默认的方言是“hiveql”。这是因为HiveQL解析器更完整。在很多用例中推荐使用“hiveql”。