# 监控应用程序
除了Spark的监控功能,Spark Streaming增加了一些专有的功能。应用StreamingContext的时候,[Spark web UI](https://spark.apache.org/docs/latest/monitoring.html#web-interfaces)显示添加的`Streaming`菜单,用以显示运行的receivers(receivers是否是存活状态、接收的记录数、receiver错误等)和完成的批的统计信息(批处理时间、队列等待等待)。这可以用来监控流应用程序的处理过程。
在WEB UI中的`Processing Time`和`Scheduling Delay`两个度量指标是非常重要的。第一个指标表示批数据处理的时间,第二个指标表示前面的批处理完毕之后,当前批在队列中的等待时间。如果批处理时间比批间隔时间持续更长或者队列等待时间持续增加,这就预示系统无法以批数据产生的速度处理这些数据,整个处理过程滞后了。在这种情况下,考虑减少批处理时间。
Spark Streaming程序的处理过程也可以通过[StreamingListener](https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.scheduler.StreamingListener)接口来监控,这个接口允许你获得receiver状态和处理时间。注意,这个接口是开发者API,它有可能在未来提供更多的信息。
- Introduction
- 快速上手
- Spark Shell
- 独立应用程序
- 开始翻滚吧!
- 编程指南
- 引入 Spark
- 初始化 Spark
- Spark RDDs
- 并行集合
- 外部数据集
- RDD 操作
- RDD持久化
- 共享变量
- 从这里开始
- Spark Streaming
- 一个快速的例子
- 基本概念
- 关联
- 初始化StreamingContext
- 离散流
- 输入DStreams
- DStream中的转换
- DStream的输出操作
- 缓存或持久化
- Checkpointing
- 部署应用程序
- 监控应用程序
- 性能调优
- 减少批数据的执行时间
- 设置正确的批容量
- 内存调优
- 容错语义
- Spark SQL
- 开始
- 数据源
- RDDs
- parquet文件
- JSON数据集
- Hive表
- 性能调优
- 其它SQL接口
- 编写语言集成(Language-Integrated)的相关查询
- Spark SQL数据类型
- GraphX编程指南
- 开始
- 属性图
- 图操作符
- Pregel API
- 图构造者
- 顶点和边RDDs
- 图算法
- 例子
- 提交应用程序
- 独立运行Spark
- 在yarn上运行Spark
- Spark配置