企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
# 独立应用程序 现在假设我们想要使用 Spark API 写一个独立的应用程序。我们将通过使用 Scala(用 SBT),Java(用 Maven) 和 Python 写一个简单的应用程序来学习。 我们用 Scala 创建一个非常简单的 Spark 应用程序。如此简单,事实上它的名字叫 `SimpleApp.scala`: ~~~ /* SimpleApp.scala */ import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.SparkConf object SimpleApp { def main(args: Array[String]) { val logFile = "YOUR_SPARK_HOME/README.md" // 应该是你系统上的某些文件 val conf = new SparkConf().setAppName("Simple Application") val sc = new SparkContext(conf) val logData = sc.textFile(logFile, 2).cache() val numAs = logData.filter(line => line.contains("a")).count() val numBs = logData.filter(line => line.contains("b")).count() println("Lines with a: %s, Lines with b: %s".format(numAs, numBs)) } } ~~~ 这个程序仅仅是在 Spark README 中计算行里面包含 'a' 和包含 'b' 的次数。你需要注意将 `YOUR_SPARK_HOME` 替换成你已经安装 Spark 的路径。不像之前的 Spark Shell 例子,这里初始化了自己的 SparkContext,我们把 SparkContext 初始化作为程序的一部分。 我们通过 SparkContext 的构造函数参入 [SparkConf](https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkConf) 对象,这个对象包含了一些关于我们程序的信息。 我们的程序依赖于 Spark API,所以我们需要包含一个 sbt 文件文件,`simple.sbt` 解释了 Spark 是一个依赖。这个文件还要补充 Spark 依赖于一个 repository: ~~~ name := "Simple Project" version := "1.0" scalaVersion := "2.10.4" libraryDependencies += "org.apache.spark" %% "spark-core" % "1.2.0" ~~~ 要让 sbt 正确工作,我们需要把 `SimpleApp.scala` 和 `simple.sbt` 按照标准的文件目录结构布局。上面的做好之后,我们可以把程序的代码创建成一个 JAR 包。然后使用 `spark-submit` 来运行我们的程序。 ~~~ # Your directory layout should look like this $ find . . ./simple.sbt ./src ./src/main ./src/main/scala ./src/main/scala/SimpleApp.scala # Package a jar containing your application $ sbt package ... [info] Packaging {..}/{..}/target/scala-2.10/simple-project_2.10-1.0.jar # Use spark-submit to run your application $ YOUR_SPARK_HOME/bin/spark-submit \ --class "SimpleApp" \ --master local[4] \ target/scala-2.10/simple-project_2.10-1.0.jar ... Lines with a: 46, Lines with b: 23 ~~~