# DStreams上的输出操作
输出操作允许DStream的操作推到如数据库、文件系统等外部系统中。因为输出操作实际上是允许外部系统消费转换后的数据,它们触发的实际操作是DStream转换。目前,定义了下面几种输出操作:
| Output Operation | Meaning |
|-----|-----|
| print() | 在DStream的每个批数据中打印前10条元素,这个操作在开发和调试中都非常有用。在Python API中调用`pprint()`。 |
| saveAsObjectFiles(prefix, [suffix]) | 保存DStream的内容为一个序列化的文件`SequenceFile`。每一个批间隔的文件的文件名基于`prefix`和`suffix`生成。"prefix-TIME_IN_MS[.suffix]",在Python API中不可用。 |
| saveAsTextFiles(prefix, [suffix]) | 保存DStream的内容为一个文本文件。每一个批间隔的文件的文件名基于`prefix`和`suffix`生成。"prefix-TIME_IN_MS[.suffix]" |
| saveAsHadoopFiles(prefix, [suffix]) | 保存DStream的内容为一个hadoop文件。每一个批间隔的文件的文件名基于`prefix`和`suffix`生成。"prefix-TIME_IN_MS[.suffix]",在Python API中不可用。 |
| foreachRDD(func) | 在从流中生成的每个RDD上应用函数`func`的最通用的输出操作。这个函数应该推送每个RDD的数据到外部系统,例如保存RDD到文件或者通过网络写到数据库中。需要注意的是,`func`函数在驱动程序中执行,并且通常都有RDD action在里面推动RDD流的计算。 |
### 利用foreachRDD的设计模式
dstream.foreachRDD是一个强大的原语,发送数据到外部系统中。然而,明白怎样正确地、有效地用这个原语是非常重要的。下面几点介绍了如何避免一般错误。
- 经常写数据到外部系统需要建一个连接对象(例如到远程服务器的TCP连接),用它发送数据到远程系统。为了达到这个目的,开发人员可能不经意的在Spark驱动中创建一个连接对象,但是在Spark worker中尝试调用这个连接对象保存记录到RDD中,如下:
~~~
dstream.foreachRDD(rdd => {
val connection = createNewConnection() // executed at the driver
rdd.foreach(record => {
connection.send(record) // executed at the worker
})
})
~~~
这是不正确的,因为这需要先序列化连接对象,然后将它从driver发送到worker中。这样的连接对象在机器之间不能传送。它可能表现为序列化错误(连接对象不可序列化)或者初始化错误(连接对象应该在worker中初始化)等等。正确的解决办法是在worker中创建连接对象。
- 然而,这会造成另外一个常见的错误-为每一个记录创建了一个连接对象。例如:
~~~
dstream.foreachRDD(rdd => {
rdd.foreach(record => {
val connection = createNewConnection()
connection.send(record)
connection.close()
})
})
~~~
通常,创建一个连接对象有资源和时间的开支。因此,为每个记录创建和销毁连接对象会导致非常高的开支,明显的减少系统的整体吞吐量。一个更好的解决办法是利用`rdd.foreachPartition`方法。为RDD的partition创建一个连接对象,用这个两件对象发送partition中的所有记录。
~~~
dstream.foreachRDD(rdd => {
rdd.foreachPartition(partitionOfRecords => {
val connection = createNewConnection()
partitionOfRecords.foreach(record => connection.send(record))
connection.close()
})
})
~~~
这就将连接对象的创建开销分摊到了partition的所有记录上了。
- 最后,可以通过在多个RDD或者批数据间重用连接对象做更进一步的优化。开发者可以保有一个静态的连接对象池,重复使用池中的对象将多批次的RDD推送到外部系统,以进一步节省开支。
~~~
dstream.foreachRDD(rdd => {
rdd.foreachPartition(partitionOfRecords => {
// ConnectionPool is a static, lazily initialized pool of connections
val connection = ConnectionPool.getConnection()
partitionOfRecords.foreach(record => connection.send(record))
ConnectionPool.returnConnection(connection) // return to the pool for future reuse
})
})
~~~
需要注意的是,池中的连接对象应该根据需要延迟创建,并且在空闲一段时间后自动超时。这样就获取了最有效的方式发生数据到外部系统。
其它需要注意的地方:
- 输出操作通过懒执行的方式操作DStreams,正如RDD action通过懒执行的方式操作RDD。具体地看,RDD actions和DStreams输出操作接收数据的处理。因此,如果你的应用程序没有任何输出操作或者用于输出操作`dstream.foreachRDD()`,但是没有任何RDD action操作在`dstream.foreachRDD()`里面,那么什么也不会执行。系统仅仅会接收输入,然后丢弃它们。
- 默认情况下,DStreams输出操作是分时执行的,它们按照应用程序的定义顺序按序执行。
- Introduction
- 快速上手
- Spark Shell
- 独立应用程序
- 开始翻滚吧!
- 编程指南
- 引入 Spark
- 初始化 Spark
- Spark RDDs
- 并行集合
- 外部数据集
- RDD 操作
- RDD持久化
- 共享变量
- 从这里开始
- Spark Streaming
- 一个快速的例子
- 基本概念
- 关联
- 初始化StreamingContext
- 离散流
- 输入DStreams
- DStream中的转换
- DStream的输出操作
- 缓存或持久化
- Checkpointing
- 部署应用程序
- 监控应用程序
- 性能调优
- 减少批数据的执行时间
- 设置正确的批容量
- 内存调优
- 容错语义
- Spark SQL
- 开始
- 数据源
- RDDs
- parquet文件
- JSON数据集
- Hive表
- 性能调优
- 其它SQL接口
- 编写语言集成(Language-Integrated)的相关查询
- Spark SQL数据类型
- GraphX编程指南
- 开始
- 属性图
- 图操作符
- Pregel API
- 图构造者
- 顶点和边RDDs
- 图算法
- 例子
- 提交应用程序
- 独立运行Spark
- 在yarn上运行Spark
- Spark配置