[TOC]
# 前言
* 设计思想
分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析;
* 在大数据系统中作用:
为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务
* 重点概念:文件切块,副本存放,元数据
# HDFS的概念和特性
首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件
其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;
重要特性如下:
1. HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M
2. HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:`hdfs://namenode:port/dir-a/dir-b/dir-c/file.data`
3. 目录结构及文件分块位置信息(元数据)的管理由namenode节点承担
`——namenode`是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)
4. 文件的各个block的存储管理由datanode节点承担
`---- datanode`是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication,默认是3)
5. HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改
(注:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高)
# HDFS文件块大小
HDFS文件在物理上是分块储存(block),块的大小可以通过配置参数(dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M
HDFS的块比磁盘的块大,其目的是为了最小化寻址开销.如果块设置得足够大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间.因而,传输一个由多个块组成的文件的时间取决于磁盘传输速率
如果寻址时间约为10ms,而传输速率为100MB/S,为了使寻址时间仅占传输时间的1%,我们要将块大小设置约为100MB.默认的块大小128MB
寻址时间为传输时间的1%时候是最佳时间
块的大小: `10ms*100*100M/s=100M`
# 概述
1. HDFS集群分为两大角色:NameNode、DataNode (Secondary Namenode)
2. NameNode负责管理整个文件系统的元数据
3. DataNode 负责管理用户的文件数据块
4. 文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上
5. 每一个文件块可以有多个副本,并存放在不同的datanode上
6. Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
7. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行
## HDFS写概述
客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本
### 详细步骤图
![](https://box.kancloud.cn/7fb1c790385d2841fba302d06fdd722a_925x606.png)
详细步骤解析
1. 根namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在
2. namenode返回是否可以上传
3. client请求第一个 block该传输到哪些datanode服务器上
4. namenode返回3个datanode服务器ABC
5. client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端
6. client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答
7. 当一个block传输完成之后,client再次请求namenode上传第二个block的服务器
## HDFS读数据流程
### 概述
客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件
### HDFS读数据流程
客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件
![](https://box.kancloud.cn/b9472ea84ab33fda272450618688c1a9_942x437.png)
有时候会发现有crc文件,这是校验文件,校验读取的文件是不是完整的
详细步骤解析
1. 跟namenode通信查询元数据,找到文件块所在的datanode服务器
2. 挑选一台datanode(就近原则,然后随机)服务器,请求建立socket流
3. datanode开始发送数据(从磁盘里面读取数据放入流,以packet为单位来做校验)
4. 客户端以packet为单位接收,现在本地缓存,然后写入目标文件
# NAMENODE工作机制
## 问题场景:
1. 集群启动后,可以查看目录,但是上传文件时报错,打开web页面可看到namenode正处于safemode状态,怎么处理?
解释:
safemode是namenode的一种状态(active/standby/safemode安全模式)
namenode进入安全模式的原理:
a. namenode发现集群中的block丢失率达到一定比例时(0.01%),namenode就会进入安全模式,在安全模式下,客户端不能对任何数据进行操作,只能查看元数据信息(比如ls/mkdir)
b. 如何退出安全模式?
找到问题所在,进行修复(比如修复宕机的datanode)
或者可以手动强行退出安全模式(没有真正解决问题): `hdfs namenode --safemode leave`
c. 在hdfs集群正常冷启动时,namenode也会在safemode状态下维持相当长的一段时间,此时你不需要去理会,等待它自动退出安全模式即可
(原理:
namenode的内存元数据中,包含文件路径、副本数、blockid,及每一个block所在datanode的信息,而fsimage中,不包含block所在的datanode信息,那么,当namenode冷启动时,此时内存中的元数据只能从fsimage中加载而来,从而就没有block所在的datanode信息——>就会导致namenode认为所有的block都已经丢失——>进入安全模式——>datanode启动后,会定期向namenode汇报自身所持有的blockid信息,——>随着datanode陆续启动,从而陆续汇报block信息,namenode就会将内存元数据中的block所在datanode信息补全更新——>找到了所有block的位置,从而自动退出安全模式)
2. Namenode服务器的磁盘故障导致namenode宕机,如何挽救集群及数据?
解决:
namenode配置多个路径,也可以用网络磁盘路径
secondary namenode的目录可以恢复
3. Namenode是否可以有多个?namenode内存要配置多大?namenode跟集群数据存储能力有关系吗?
解决:
可以多个
内存一般配置几十G就行
跟集群存储关系不是很大,和datanode有关,当然了要避免上传小文件
4. 文件的blocksize究竟调大好还是调小好?--结合mapreduce
要看数据量和业务逻辑
最好mapreduce跑了不要太长
## NAMENODE职责
负责客户端请求的响应
元数据的管理(查询,修改)
它维护着文件系统树及整棵树内所有的文件和目录.这些信息以两个文件形式永久保存在本地磁盘上,命名空间镜像文件和编辑日志文件.
namenode也记录着每个文件中各个块所在的数据节点信息,但它并不永久保存块的位置信息,因为这些信息会在系统启动时根据数据节点信息重建.
![](https://box.kancloud.cn/f730541a508271ddb6b93ce779598000_809x400.png)
1. 第一阶段:namenode启动
1. 第一次namenode格式化后,创建fsimage和edits文件.如果不是第一次启动,直接加载编辑日志和镜像文件到内存
2. 客户端对元数据进行增删改的请求
3. namenode记录操作日志,更新滚动日志
4. namenode在内存对数据进行增删改查
2. 第二阶段:Secondary NameNode工作
1. Secondary NameNode询问namenode是否需要checkpoint.直接带回namenode是否检查结果
2. Secondary NameNode请求执行checkpoint
3. namenode滚动正在写的edits日志
4. 将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode
5. Secondary NameNode加载编辑日志和镜像文件到内存并合并
6. 生成新的镜像文件fsimage.chkpoint
7. 拷贝fsimage.chkpoint到namenode
8. namenode将fsimage.chkpoint重新命名成fsimage
![](https://box.kancloud.cn/0dd427923f748d747517aba8e64aff10_825x520.png)
## 元数据管理
namenode对数据的管理采用了三种存储形式:
1. 内存元数据(NameSystem)(namenode自己封装一个文件系统)
2. 磁盘元数据镜像文件
3. 数据操作日志文件(可通过日志运算出元数据)
### 元数据存储机制
A. 内存中有一份完整的元数据(内存meta data) (内存meta data = fsimage + edits文件(编辑日志))
B. 磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)
C. 用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中
### 元数据手动查看
namenode被格式话后在/path/name/current目录中产生文件
可以通过hdfs的一个工具来查看edits中的信息
~~~
bin/hdfs oev -i edits -o edits.xml
bin/hdfs oiv -i fsimage_0000000000000000087 -p XML -o fsimage.xml
~~~
* Fsimage文件:HDFS文件系统元数据的一个永久性的检查点,其中包含HDFS文件系统的所有目录和文件idnode的序列化信息
* Edits文件:存放HDFS文件系统的所有更新操作的路径,文件系统客户端执行的所有写操作首先被记录到edits文件中
* seen_txid文件保存的是一个数字,就是最后一个edits_的数字
* 每次Namenode启动的时候都会将fsimage文件读入内存,并从0001开始到seen_txid中记录的数字依次执行每个edits里面的更新操作,保证内存中的元数据信息是最新的,同步的,可以看成Namenode启动的时候就将fsimage和edits文件进行了合并
查看oiv和oev命令
基本语法
`hdfs oiv -p 文件类型 -i 镜像文件 -o 转换后文件输出路径`
### 元数据的checkpoint
每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)
**checkpoint的详细过程**
![](https://box.kancloud.cn/5c1cb30ba240af72340815bec49ba783_918x496.png)
**checkpoint操作的触发条件配置参数**
~~~
dfs.namenode.checkpoint.check.period=60 #检查触发条件是否满足的频率,60秒
dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary
#以上两个参数做checkpoint操作时,secondary namenode的本地工作目录
dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}
dfs.namenode.checkpoint.max-retries=3 #最大重试次数
dfs.namenode.checkpoint.period=3600 #两次checkpoint之间的时间间隔3600秒
dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录
~~~
**检查时间参数设置**
通常情况下,SecondaryNameNode每隔一小时执行一次
hdfs-default.xml
~~~
<property>
<name>dfs.namenode.checkpoint.period</name>
<value>3600</value>
</property>
~~~
一分钟检查一次操作次数,当操作次数达到1百万时,SecondaryNameNode执行一次
~~~
<property>
<name>dfs.namenode.checkpoint.txns</name>
<value>1000000</value>
<description>操作动作次数</description>
</property>
<property>
<name>dfs.namenode.checkpoint.check.period</name>
<value>60</value>
<description>1分钟检查一次操作次数</description>
</property>
~~~
**checkpoint的附带作用**
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据
### 元数据目录说明
在第一次部署好Hadoop集群的时候,我们需要在NameNode(NN)节点上格式化磁盘:
~~~
$HADOOP_HOME/bin/hdfs namenode -format
~~~
格式化完成之后,将会在$dfs.namenode.name.dir/current目录下如下的文件结构
~~~
current/
|-- VERSION
|-- edits_*
|-- fsimage_0000000000008547077
|-- fsimage_0000000000008547077.md5
`-- seen_txid
~~~
其中的dfs.name.dir是在hdfs-site.xml文件中配置的,默认值如下:
~~~
<property>
<name>dfs.name.dir</name>
<value>file://${hadoop.tmp.dir}/dfs/name</value>
</property>
hadoop.tmp.dir是在core-site.xml中配置的,默认值如下
<property>
<name>hadoop.tmp.dir</name>
<value>/tmp/hadoop-${user.name}</value>
<description>A base for other temporary directories.</description>
</property>
~~~
`dfs.namenode.name.dir`属性可以配置多个目录,
如`/data1/dfs/name,/data2/dfs/name,/data3/dfs/name,....。`各个目录存储的文件结构和内容都完全一样,相当于备份,这样做的好处是当其中一个目录损坏了,也不会影响到Hadoop的元数据,特别是当其中一个目录是NFS(网络文件系统Network File System,NFS)之上,即使你这台机器损坏了,元数据也得到保存。
下面对`$dfs.namenode.name.dir/current/目录下的文件进行解释。`
1. VERSION文件是Java属性文件,内容大致如下:
~~~
#Fri Nov 15 19:47:46 CST 2013
namespaceID=934548976
clusterID=CID-cdff7d73-93cd-4783-9399-0a22e6dce196
cTime=0
storageType=NAME_NODE
blockpoolID=BP-893790215-192.168.24.72-1383809616115
layoutVersion=-47
~~~
其中
(1). namespaceID是文件系统的唯一标识符,在文件系统首次格式化之后生成的
(2). storageType说明这个文件存储的是什么进程的数据结构信息(如果是DataNode,storageType=DATA_NODE)
(3). cTime表示NameNode存储时间的创建时间,由于我的NameNode没有更新过,所以这里的记录值为0,以后对NameNode升级之后,cTime将会记录更新时间戳;
(4). layoutVersion表示HDFS永久性数据结构的版本信息, 只要数据结构变更,版本号也要递减,此时的HDFS也需要升级,否则磁盘仍旧是使用旧版本的数据结构,这会导致新版本的NameNode无法使用;
(5)、clusterID是系统生成或手动指定的集群ID,在-clusterid选项中可以使用它;如下说明
a. 使用如下命令格式化一个Namenode:
~~~
$HADOOP_HOME/bin/hdfs namenode -format [-clusterId <cluster_id>]
~~~
选择一个唯一的cluster_id,并且这个cluster_id不能与环境中其他集群有冲突。如果没有提供cluster_id,则会自动生成一个唯一的ClusterID。
b. 使用如下命令格式化其他Namenode:
~~~
$HADOOP_HOME/bin/hdfs namenode -format -clusterId <cluster_id>
~~~
c. 升级集群至最新版本。在升级过程中需要提供一个ClusterID,例如:
~~~
$HADOOP_PREFIX_HOME/bin/hdfs start namenode --config $HADOOP_CONF_DIR -upgrade -clusterId <cluster_ID>
~~~
如果没有提供ClusterID,则会自动生成一个ClusterID。
(6). blockpoolID:是针对每一个Namespace所对应的blockpool的ID,上面的这个BP-893790215-192.168.24.72-1383809616115就是在我的ns1的namespace下的存储块池的ID,这个ID包括了其对应的NameNode节点的ip地址。
2. ` $dfs.namenode.name.dir/current/seen_txid`非常重要,是存放transactionId的文件,format之后是0,它代表的是namenode里面的`edits_*`文件的尾数,namenode重启的时候,会按照seen_txid的数字,循序从头跑`edits_0000001~`到seen_txid的数字。所以当你的hdfs发生异常重启的时候,一定要比对seen_txid内的数字是不是你edits最后的尾数,不然会发生建置namenode时metaData的资料有缺少,导致误删Datanode上多余Block的资讯。
3.` $dfs.namenode.name.dir/current`目录下在format的同时也会生成fsimage和edits文件,及其对应的md5校验文件。
补充:seen_txid
文件中记录的是edits滚动的序号,每次重启namenode时,namenode就知道要将哪些edits
## SecondaryNameNode
并非NameNode的热备.当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务
# DATANODE的工作机制
![](https://box.kancloud.cn/21dee845b8698700a0723447cf9b28d8_1247x626.png)
1. 一个数据块在datanode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块长度,块数据的校验和,以及时间戳
2. DataNode启动后向namenode注册,通过后,周期性(1小时)的向namenode上报所有块信息
3. 心跳是每3秒一次,心跳返回结果带有namenode给该datanode的命令如复制块数据带另一台机器,或删除到另一台机器,或删除某个数据块.如果超过10分钟没有收到某个datanode的心跳,则认为该节点不可用
4. 集群运行中可以安全加入和退出一些机器
## 问题场景
1. 集群容量不够,怎么扩容?
2. 如果有一些datanode宕机,该怎么办?
3. datanode明明已启动,但是集群中的可用datanode列表中就是没有,怎么办?
以上这类问题的解答,有赖于对datanode工作机制的深刻理解
## 概述
### Datanode工作职责:
1. 存储管理用户的文件块数据
定期向namenode汇报自身所持有的block信息(通过心跳信息上报)
(这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)
~~~
<property>
<name>dfs.blockreport.intervalMsec</name>
<value>3600000</value>
<description>Determines block reporting interval in milliseconds.</description>
</property>
~~~
2. Datanode掉线判断时限参数
datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:
~~~
timeout = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。
~~~
而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。
~~~
<property>
<name>heartbeat.recheck.interval</name>
<value>2000</value>
</property>
<property>
<name>dfs.heartbeat.interval</name>
<value>1</value>
</property>
~~~
## 观察验证DATANODE功能
上传一个文件,观察文件的block具体的物理存放情况:
在每一台datanode机器上的这个目录中能找到文件的切块:
~~~
/home/hadoop/app/hadoop-2.4.1/tmp/dfs/data/current/BP-193442119-192.168.2.120-1432457733977/current/finalized
~~~
# datanode版本号
在/path/data/tmp/dfs/data/中有个VERSION
cat下,会出
storageID集群的id
clusterID存储的id,机器的id
cTime创建的时间
storageType机器类型,datanode还是什么
layoutVersion新特性的版号
然后在这层中`cd current/`也有个VERSION
cat下会有namespaceID这是NameNode的id,集群中可能有多个namenode,这个表示属于哪个namenode
# maven依赖
~~~
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.6.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.6.4</version>
</dependency>
~~~
- 基础
- 编译和安装
- classpath到底是什么?
- 编译运行
- 安装
- sdkman多版本
- jabba多版本
- java字节码查看
- 数据类型
- 简介
- 整形
- char和int
- 变量和常量
- 大数值运算
- 基本类型包装类
- Math类
- 内存划分
- 位运算符
- 方法相关
- 方法重载
- 可变参数
- 方法引用
- 面向对象
- 定义
- 继承和覆盖
- 接口和抽象类
- 接口定义增强
- 内建函数式接口
- 多态
- 泛型
- final和static
- 内部类
- 包
- 修饰符
- 异常
- 枚举类
- 代码块
- 对象克隆
- BeanUtils
- java基础类
- scanner类
- Random类
- System类
- Runtime类
- Comparable接口
- Comparator接口
- MessageFormat类
- NumberFormat
- 数组相关
- 数组
- Arrays
- string相关
- String
- StringBuffer
- StringBuilder
- 正则
- 日期类
- Locale类
- Date
- DateFormat
- SimpleDateFormat
- Calendar
- 新时间日期API
- 简介
- LocalDate,LocalTime,LocalDateTime
- Instant时间点
- 带时区的日期,时间处理
- 时间间隔
- 日期时间校正器
- TimeUnit
- 用yyyy
- 集合
- 集合和迭代器
- ArrayList集合
- List
- Set
- 判断集合唯一
- Map和Entry
- stack类
- Collections集合工具类
- Stream数据流
- foreach不能修改内部元素
- of方法
- IO
- File类
- 字节流stream
- 字符流Reader
- IO流分类
- 转换流
- 缓冲流
- 流的操作规律
- properties
- 序列化流与反序列化流
- 打印流
- System类对IO支持
- commons-IO
- IO流总结
- NIO
- 异步与非阻塞
- IO通信
- Unix的IO模型
- epoll对于文件描述符操作模式
- 用户空间和内核空间
- NIO与普通IO的主要区别
- Paths,Path,Files
- Buffer
- Channel
- Selector
- Pipe
- Charset
- NIO代码
- 多线程
- 创建线程
- 线程常用方法
- 线程池相关
- 线程池概念
- ThreadPoolExecutor
- Runnable和Callable
- 常用的几种线程池
- 线程安全
- 线程同步的几种方法
- synchronized
- 死锁
- lock接口
- ThreadLoad
- ReentrantLock
- 读写锁
- 锁的相关概念
- volatile
- 释放锁和不释放锁的操作
- 等待唤醒机制
- 线程状态
- 守护线程和普通线程
- Lamda表达式
- 反射相关
- 类加载器
- 反射
- 注解
- junit注解
- 动态代理
- 网络编程相关
- 简介
- UDP
- TCP
- 多线程socket上传图片
- NIO
- JDBC相关
- JDBC
- 预处理
- 批处理
- 事务
- properties配置文件
- DBUtils
- DBCP连接池
- C3P0连接池
- 获得MySQL自动生成的主键
- Optional类
- Jigsaw模块化
- 日志相关
- JDK日志
- log4j
- logback
- xml
- tomcat
- maven
- 简介
- 仓库
- 目录结构
- 常用命令
- 生命周期
- idea配置
- jar包冲突
- 依赖范围
- 私服
- 插件
- git-commit-id-plugin
- maven-assembly-plugin
- maven-resources-plugin
- maven-compiler-plugin
- versions-maven-plugin
- maven-source-plugin
- tomcat-maven-plugin
- 多环境
- 自定义插件
- stream
- swing
- json
- jackson
- optional
- junit
- gradle
- servlet
- 配置
- ServletContext
- 生命周期
- HttpServlet
- request
- response
- 乱码
- session和cookie
- cookie
- session
- jsp
- 简介
- 注释
- 方法,成员变量
- 指令
- 动作标签
- 隐式对象
- EL
- JSTL
- javaBean
- listener监听器
- Filter过滤器
- 图片验证码
- HttpUrlConnection
- 国际化
- 文件上传
- 文件下载
- spring
- 简介
- Bean
- 获取和实例化
- 属性注入
- 自动装配
- 继承和依赖
- 作用域
- 使用外部属性文件
- spel
- 前后置处理器
- 生命周期
- 扫描规则
- 整合多个配置文件
- 注解
- 简介
- 注解分层
- 类注入
- 分层和作用域
- 初始化方法和销毁方法
- 属性
- 泛型注入
- Configuration配置文件
- aop
- aop的实现
- 动态代理实现
- cglib代理实现
- aop名词
- 简介
- aop-xml
- aop-注解
- 代理方式选择
- jdbc
- 简介
- JDBCTemplate
- 事务
- 整合
- junit整合
- hibernate
- 简介
- hibernate.properties
- 实体对象三种状态
- 检索方式
- 简介
- 导航对象图检索
- OID检索
- HQL
- Criteria(QBC)
- Query
- 缓存
- 事务管理
- 关系映射
- 注解
- 优化
- MyBatis
- 简介
- 入门程序
- Mapper动态代理开发
- 原始Dao开发
- Mapper接口开发
- SqlMapConfig.xml
- map映射文件
- 输出返回map
- 输入参数
- pojo包装类
- 多个输入参数
- resultMap
- 动态sql
- 关联
- 一对一
- 一对多
- 多对多
- 整合spring
- CURD
- 占位符和sql拼接以及参数处理
- 缓存
- 延迟加载
- 注解开发
- springMVC
- 简介
- RequestMapping
- 参数绑定
- 常用注解
- 响应
- 文件上传
- 异常处理
- 拦截器
- springBoot
- 配置
- 热更新
- java配置
- springboot配置
- yaml语法
- 运行
- Actuator 监控
- 多环境配置切换
- 日志
- 日志简介
- logback和access
- 日志文件配置属性
- 开机自启
- aop
- 整合
- 整合Redis
- 整合Spring Data JPA
- 基本查询
- 复杂查询
- 多数据源的支持
- Repository分析
- JpaSpecificationExecutor
- 整合Junit
- 整合mybatis
- 常用注解
- 基本操作
- 通用mapper
- 动态sql
- 关联映射
- 使用xml
- spring容器
- 整合druid
- 整合邮件
- 整合fastjson
- 整合swagger
- 整合JDBC
- 整合spingboot-cache
- 请求
- restful
- 拦截器
- 常用注解
- 参数校验
- 自定义filter
- websocket
- 响应
- 异常错误处理
- 文件下载
- 常用注解
- 页面
- Thymeleaf组件
- 基本对象
- 内嵌对象
- 上传文件
- 单元测试
- 模拟请求测试
- 集成测试
- 源码解析
- 自动配置原理
- 启动流程分析
- 源码相关链接
- Servlet,Filter,Listener
- springcloud
- 配置
- 父pom
- 创建子工程
- Eureka
- Hystrix
- Ribbon
- Feign
- Zuul
- kotlin
- 基本数据类型
- 函数
- 区间
- 区块链
- 简介
- linux
- ulimit修改
- 防止syn攻击
- centos7部署bbr
- debain9开启bbr
- mysql
- 隔离性
- sql执行加载顺序
- 7种join
- explain
- 索引失效和优化
- 表连接优化
- orderby的filesort问题
- 慢查询
- show profile
- 全局查询日志
- 死锁解决
- sql
- 主从
- IDEA
- mac快捷键
- 美化界面
- 断点调试
- 重构
- springboot-devtools热部署
- IDEA进行JAR打包
- 导入jar包
- ProjectStructure
- toString添加json模板
- 配置maven
- Lombok插件
- rest client
- 文档显示
- sftp文件同步
- 书签
- 代码查看和搜索
- postfix
- live template
- git
- 文件头注释
- JRebel
- 离线模式
- xRebel
- github
- 连接mysql
- 选项没有Java class的解决方法
- 扩展
- 项目配置和web部署
- 前端开发
- json和Inject language
- idea内存和cpu变高
- 相关设置
- 设计模式
- 单例模式
- 简介
- 责任链
- JUC
- 原子类
- 原子类简介
- 基本类型原子类
- 数组类型原子类
- 引用类型原子类
- JVM
- JVM规范内存解析
- 对象的创建和结构
- 垃圾回收
- 内存分配策略
- 备注
- 虚拟机工具
- 内存模型
- 同步八种操作
- 内存区域大小参数设置
- happens-before
- web service
- tomcat
- HTTPS
- nginx
- 变量
- 运算符
- 模块
- Rewrite规则
- Netty
- netty为什么没用AIO
- 基本组件
- 源码解读
- 简单的socket例子
- 准备netty
- netty服务端启动
- 案例一:发送字符串
- 案例二:发送对象
- websocket
- ActiveMQ
- JMS
- 安装
- 生产者-消费者代码
- 整合springboot
- kafka
- 简介
- 安装
- 图形化界面
- 生产过程分析
- 保存消息分析
- 消费过程分析
- 命令行
- 生产者
- 消费者
- 拦截器interceptor
- partition
- kafka为什么快
- kafka streams
- kafka与flume整合
- RabbitMQ
- AMQP
- 整体架构
- RabbitMQ安装
- rpm方式安装
- 命令行和管控页面
- 消息生产与消费
- 整合springboot
- 依赖和配置
- 简单测试
- 多方测试
- 对象支持
- Topic Exchange模式
- Fanout Exchange订阅
- 消息确认
- java client
- RabbitAdmin和RabbitTemplate
- 两者简介
- RabbitmqAdmin
- RabbitTemplate
- SimpleMessageListenerContainer
- MessageListenerAdapter
- MessageConverter
- 详解
- Jackson2JsonMessageConverter
- ContentTypeDelegatingMessageConverter
- lucene
- 简介
- 入门程序
- luke查看索引
- 分析器
- 索引库维护
- elasticsearch
- 配置
- 插件
- head插件
- ik分词插件
- 常用术语
- Mapping映射
- 数据类型
- 属性方法
- Dynamic Mapping
- Index Template 索引模板
- 管理映射
- 建立映射
- 索引操作
- 单模式下CURD
- mget多个文档
- 批量操作
- 版本控制
- 基本查询
- Filter过滤
- 组合查询
- 分析器
- redis
- String
- list
- hash
- set
- sortedset
- 发布订阅
- 事务
- 连接池
- 管道
- 分布式可重入锁
- 配置文件翻译
- 持久化
- RDB
- AOF
- 总结
- Lettuce
- zookeeper
- zookeeper简介
- 集群部署
- Observer模式
- 核心工作机制
- zk命令行操作
- zk客户端API
- 感知服务动态上下线
- 分布式共享锁
- 原理
- zab协议
- 两阶段提交协议
- 三阶段提交协议
- Paxos协议
- ZAB协议
- hadoop
- 简介
- hadoop安装
- 集群安装
- 单机安装
- linux编译hadoop
- 添加新节点
- 退役旧节点
- 集群间数据拷贝
- 归档
- 快照管理
- 回收站
- 检查hdfs健康状态
- 安全模式
- hdfs简介
- hdfs命令行操作
- 常见问题汇总
- hdfs客户端操作
- mapreduce工作机制
- 案例-单词统计
- 局部聚合Combiner
- combiner流程
- combiner案例
- 自定义排序
- 自定义Bean对象
- 排序的分类
- 案例-按总量排序需求
- 一次性完成统计和排序
- 分区
- 分区简介
- 案例-结果分区
- 多表合并
- reducer端合并
- map端合并(分布式缓存)
- 分组
- groupingComparator
- 案例-求topN
- 全局计数器
- 合并小文件
- 小文件的弊端
- CombineTextInputFormat机制
- 自定义InputFormat
- 自定义outputFormat
- 多job串联
- 倒排索引
- 共同好友
- 串联
- 数据压缩
- InputFormat接口实现类
- yarn简介
- 推测执行算法
- 本地提交到yarn
- 框架运算全流程
- 数据倾斜问题
- mapreduce的优化方案
- HA机制
- 优化
- Hive
- 安装
- shell参数
- 数据类型
- 集合类型
- 数据库
- DDL操作
- 创建表
- 修改表
- 分区表
- 分桶表
- DML操作
- load
- insert
- select
- export,import
- Truncate
- 注意
- 严格模式
- 函数
- 内置运算符
- 内置函数
- 自定义函数
- Transfrom实现
- having和where不同
- 压缩
- 存储
- 存储和压缩结合使用
- explain详解
- 调优
- Fetch抓取
- 本地模式
- 表的优化
- GroupBy
- count(Distinct)去重统计
- 行列过滤
- 动态分区调整
- 数据倾斜
- 并行执行
- JVM重用
- 推测执行
- reduce内存和个数
- sql查询结果作为变量(shell)
- youtube
- flume
- 简介
- 安装
- 常用组件
- 拦截器
- 案例
- 监听端口到控制台
- 采集目录到HDFS
- 采集文件到HDFS
- 多个agent串联
- 日志采集和汇总
- 单flume多channel,sink
- 自定义拦截器
- 高可用配置
- 使用注意
- 监控Ganglia
- sqoop
- 安装
- 常用命令
- 数据导入
- 准备数据
- 导入数据到HDFS
- 导入关系表到HIVE
- 导入表数据子集
- 增量导入
- 数据导出
- 打包脚本
- 作业
- 原理
- azkaban
- 简介
- 安装
- 案例
- 简介
- command类型单一job
- command类型多job工作流flow
- HDFS操作任务
- mapreduce任务
- hive脚本任务
- oozie
- 安装
- hbase
- 简介
- 系统架构
- 物理存储
- 寻址机制
- 读写过程
- 安装
- 命令行
- 基本CURD
- java api
- CURD
- CAS
- 过滤器查询
- 建表高级属性
- 与mapreduce结合
- 与sqoop结合
- 协处理器
- 参数配置优化
- 数据备份和恢复
- 节点管理
- 案例-点击流
- 简介
- HUE
- 安装
- storm
- 简介
- 安装
- 集群启动及任务过程分析
- 单词统计
- 单词统计(接入kafka)
- 并行度和分组
- 启动流程分析
- ACK容错机制
- ACK简介
- BaseRichBolt简单使用
- BaseBasicBolt简单使用
- Ack工作机制
- 本地目录树
- zookeeper目录树
- 通信机制
- 案例
- 日志告警
- 工具
- YAPI
- chrome无法手动拖动安装插件
- 时间和空间复杂度
- jenkins
- 定位cpu 100%
- 常用脚本工具
- OOM问题定位
- scala
- 编译
- 基本语法
- 函数
- 数组常用方法
- 集合
- 并行集合
- 类
- 模式匹配
- 异常
- tuple元祖
- actor并发编程
- 柯里化
- 隐式转换
- 泛型
- 迭代器
- 流stream
- 视图view
- 控制抽象
- 注解
- spark
- 企业架构
- 安装
- api开发
- mycat
- Groovy
- 基础