[TOC]
# 导包
尤其是Text和CombineTextInputFormat
Mapper中第一个输入的参数必须是LongWritable或者NullWritable,不可以是IntWritable,报的错误是类型转换异常
# reduce个数
~~~
java.lang.Exception:java.io.IOException:Illegal partition for 13926435656(4)
~~~
说明partition和reducetask个数没对上,调整reducetask个数
如果分区数不是1,但是reducetask为1,是否执行分区过程.答案是:不执行分区过程.因为maptask源码中,执行分区的前提先判断reduceNum个数是否大于1.不大于1肯定不执行
# jvm版本
在windows环境编译的jar包导入到linux环境中运行
报如下错误
~~~
Exception in thread "main" java.lang.UnsupportedClassVersionError: com/wordcount/WordCountDriver:Unsupported major.minor version 52.0
~~~
原因是windows环境用的是jdk1.7,linux环境用的是jdk1.8,统一版本
# 副本节点选择
**低版本Hadoop副本节点选择**
第一个副本在client所处的节点上.如果客户端在集群外,随机选一个
第二个副本和第一个副本位于不相同机架的随机节点上
第三个副本和第二个副本位于相同机架,节点随机
![](https://box.kancloud.cn/cb40987f3124a6559140aa12b6ae372b_447x347.png)
**Hadoop2.7.2副本节点选择**
第一个副本在client所处的节点上.如果客户端再集群外,随机选一个
第二个副本和第一个副本位于相同机架,随机节点
第三副本位于不同机架,随机节点
![](https://box.kancloud.cn/0d1120a60d36fa935a3581b5fa200409_469x355.png)
HDFS满足客户端访问副本数据的最近原则.客户端距离那个副本数据最近,HDFS就让哪个节点把数据给客户端
# NameNode故障处理方法
**方法一**
将SecondaryNameNode中数据拷贝到namenode存储数据的目录
**方法二**
使用-importCheckpoint选项启动namenode守护进程,从而将SecondaryNameNode中数据拷贝到namenode目录中
## 手动拷贝SecondaryNameNode数据
模拟namenode故障,并采用方法一,恢复namenode数据
1. kill -9 namenode进程
2. 删除namenode存储的数据(/path/data/tmp/dfs/name/*)
3. 拷贝SecondaryNameNode中数据到原namenode存储数据目录(/path/data/tmp/dfs/namesecondary/*)
4. 重新启动namenode(hadoop-daemon.sh start namenode)
## 采用importCheckpoint命令拷贝SecondaryNameNode数据
模拟namenode故障,采用方法二,恢复namenode数据
修改hdfs-site.xml
~~~
<property>
<name>dfs.namenode.checkpoint.period</name>
<value>120</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/path/data/tmp/dfs/name</value>
</property>
~~~
1. kill -9 namenode进程
2. 删除namenode存储的数据(/path/data/tmp/dfs/name/*)
3. 如果SecondaryNameNode不和NameNode在一个主机节点上,需要将SecondaryNameNode存储数据的目录拷贝带NameNode存储数据的平级目录,并删除in_use.lock文件
~~~
/path/data/tmp/dfs/namesecondary/* 拷贝过去
rm -rf in_use.lock
pwd(/path/data/tmp/dfs)
ls(data name namesecondary)
~~~
# 机架感知配置
Hadoop机架感知
1. 背景
Hadoop在设计时考虑到数据的安全与高效,数据文件默认在HDFS上存放三份,存储策略为本地一份,同机架内其它某一节点上一份,不同机架的某一节点上一份。这样如果本地数据损坏,节点可以从同一机架内的相邻节点拿到数据,速度肯定比从跨机架节点上拿数据要快;同时,如果整个机架的网络出现异常,也能保证在其它机架的节点上找到数据。为了降低整体的带宽消耗和读取延时,HDFS会尽量让读取程序读取离它最近的副本。如果在读取程序的同一个机架上有一个副本,那么就读取该副本。如果一个HDFS集群跨越多个数据中心,那么客户端也将首先读本地数据中心的副本。那么Hadoop是如何确定任意两个节点是位于同一机架,还是跨机架的呢?答案就是机架感知。
默认情况下,hadoop的机架感知是没有被启用的。所以,在通常情况下,hadoop集群的HDFS在选机器的时候,是随机选择的,也就是说,很有可能在写数据时,hadoop将第一块数据block1写到了rack1上,然后随机的选择下将block2写入到了rack2下,此时两个rack之间产生了数据传输的流量,再接下来,在随机的情况下,又将block3重新又写回了rack1,此时,两个rack之间又产生了一次数据流量。在job处理的数据量非常的大,或者往hadoop推送的数据量非常大的时候,这种情况会造成rack之间的网络流量成倍的上升,成为性能的瓶颈,进而影响作业的性能以至于整个集群的服务
2. 配置
默认情况下,namenode启动时候日志是这样的:
`2013-09-22 17:27:26,423 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /default-rack/ 192.168.147.92:50010`
每个IP 对应的机架ID都是 /default-rack ,说明hadoop的机架感知没有被启用。
要将hadoop机架感知的功能启用,配置非常简单,在 NameNode所在节点的`/home/bigdata/apps/hadoop/etc/hadoop的core-site.xml`配置文件中配置一个选项:
~~~
<property>
<name>topology.script.file.name</name>
<value>/home/bigdata/apps/hadoop/etc/hadoop/topology.sh</value>
</property>
~~~
这个配置选项的value指定为一个可执行程序,通常为一个脚本,该脚本接受一个参数,输出一个值。接受的参数通常为某台datanode机器的ip地址,而输出的值通常为该ip地址对应的datanode所在的rack,例如`”/rack1”`。Namenode启动时,会判断该配置选项是否为空,如果非空,则表示已经启用机架感知的配置,此时namenode会根据配置寻找该脚本,并在接收到每一个datanode的heartbeat时,将该datanode的ip地址作为参数传给该脚本运行,并将得到的输出作为该datanode所属的机架ID,保存到内存的一个map中.
至于脚本的编写,就需要将真实的网络拓朴和机架信息了解清楚后,通过该脚本能够将机器的ip地址和机器名正确的映射到相应的机架上去。一个简单的实现如下:
~~~
#!/bin/bash
HADOOP_CONF=/home/bigdata/apps/hadoop/etc/hadoop
while [ $# -gt 0 ] ; do
nodeArg=$1
exec<${HADOOP_CONF}/topology.data
result=""
while read line ; do
ar=( $line )
if [ "${ar[0]}" = "$nodeArg" ]||[ "${ar[1]}" = "$nodeArg" ]; then
result="${ar[2]}"
fi
done
shift
if [ -z "$result" ] ; then
echo -n "/default-rack"
else
echo -n "$result"
fi
done
~~~
topology.data,格式为:节点(ip或主机名) `/交换机xx/机架xx`
~~~
192.168.147.91 tbe192168147091 /dc1/rack1
192.168.147.92 tbe192168147092 /dc1/rack1
192.168.147.93 tbe192168147093 /dc1/rack2
192.168.147.94 tbe192168147094 /dc1/rack3
192.168.147.95 tbe192168147095 /dc1/rack3
192.168.147.96 tbe192168147096 /dc1/rack3
~~~
需要注意的是,在Namenode上,该文件中的节点必须使用IP,使用主机名无效,而Jobtracker上,该文件中的节点必须使用主机名,使用IP无效,所以,最好ip和主机名都配上。
这样配置后,namenode启动时候日志是这样的:
`2013-09-23 17:16:27,272 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /dc1/rack3/ 192.168.147.94:50010`
说明hadoop的机架感知已经被启用了。
查看HADOOP机架信息命令:
~~~
./hadoop dfsadmin -printTopology
Rack: /dc1/rack1
192.168.147.91:50010 (tbe192168147091)
192.168.147.92:50010 (tbe192168147092)
Rack: /dc1/rack2
192.168.147.93:50010 (tbe192168147093)
Rack: /dc1/rack3
192.168.147.94:50010 (tbe192168147094)
192.168.147.95:50010 (tbe192168147095)
192.168.147.96:50010 (tbe192168147096)
~~~
3. 增加数据节点,不重启NameNode
假设Hadoop集群在192.168.147.68上部署了NameNode和DataNode,启用了机架感知,执行bin/hadoop dfsadmin -printTopology看到的结果:
Rack: /dc1/rack1
192.168.147.68:50010 (dbj68)
现在想增加一个物理位置在rack2的数据节点192.168.147.69到集群中,不重启NameNode。
首先,修改NameNode节点的topology.data的配置,加入:192.168.147.69 dbj69 /dc1/rack2,保存。
~~~
192.168.147.68 dbj68 /dc1/rack1
192.168.147.69 dbj69 /dc1/rack2
~~~
然后,`sbin/hadoop-daemons.sh start datanode`启动数据节点dbj69,任意节点执行`bin/hadoop dfsadmin -printTopology` 看到的结果:
~~~
Rack: /dc1/rack1
192.168.147.68:50010 (dbj68)
Rack: /dc1/rack2
192.168.147.69:50010 (dbj69)
~~~
说明hadoop已经感知到了新加入的节点dbj69。
注意:如果不将dbj69的配置加入到topology.data中,执行sbin/hadoop-daemons.sh start datanode启动数据节点dbj69,datanode日志中会有异常发生,导致dbj69启动不成功。
~~~
2013-11-21 10:51:33,502 FATAL org.apache.hadoop.hdfs.server.datanode.DataNode: Initialization failed for block pool Block pool BP-1732631201-192.168.147.68-1385000665316 (storage id DS-878525145-192.168.147.69-50010-1385002292231) service to dbj68/192.168.147.68:9000
org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.net.NetworkTopology$InvalidTopologyException): Invalid network topology. You cannot have a rack and a non-rack node at the same level of the network topology.
at org.apache.hadoop.net.NetworkTopology.add(NetworkTopology.java:382)
at org.apache.hadoop.hdfs.server.blockmanagement.DatanodeManager.registerDatanode(DatanodeManager.java:746)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.registerDatanode(FSNamesystem.java:3498)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.registerDatanode(NameNodeRpcServer.java:876)
at org.apache.hadoop.hdfs.protocolPB.DatanodeProtocolServerSideTranslatorPB.registerDatanode(DatanodeProtocolServerSideTranslatorPB.java:91)
at org.apache.hadoop.hdfs.protocol.proto.DatanodeProtocolProtos$DatanodeProtocolService$2.callBlockingMethod(DatanodeProtocolProtos.java:20018)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:453)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1002)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1701)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1697)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1408)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1695)
at org.apache.hadoop.ipc.Client.call(Client.java:1231)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:202)
at $Proxy10.registerDatanode(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:601)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:164)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:83)
at $Proxy10.registerDatanode(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.DatanodeProtocolClientSideTranslatorPB.registerDatanode(DatanodeProtocolClientSideTranslatorPB.java:149)
at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.register(BPServiceActor.java:619)
at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.connectToNNAndHandshake(BPServiceActor.java:221)
at org.apache.hadoop.hdfs.server.datanode.BPServiceActor.run(BPServiceActor.java:660)
at java.lang.Thread.run(Thread.java:722)
~~~
4. 节点间距离计算
有了机架感知,NameNode就可以画出下图所示的datanode网络拓扑图。D1,R1都是交换机,最底层是datanode。则H1的rackid=/D1/R1/H1,H1的parent是R1,R1的是D1。这些rackid信息可以通过topology.script.file.name配置。有了这些rackid信息就可以计算出任意两台datanode之间的距离,得到最优的存放策略,优化整个集群的网络带宽均衡以及数据最优分配。
~~~
distance(/D1/R1/H1,/D1/R1/H1)=0 相同的datanode
distance(/D1/R1/H1,/D1/R1/H2)=2 同一rack下的不同datanode
distance(/D1/R1/H1,/D1/R2/H4)=4 同一IDC下的不同datanode
distance(/D1/R1/H1,/D2/R3/H7)=6 不同IDC下的datanode
~~~
# datanode节点超时时间设置
hadoop datanode节点超时时间设置
datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:
`timeout = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval`
而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。
hdfs-site.xml中的参数设置格式:
~~~
<property>
<name>heartbeat.recheck.interval</name>
<value>2000</value>
</property>
<property>
<name>dfs.heartbeat.interval</name>
<value>1</value>
</property>
~~~
# hadoop安装部署问题
hadoop的日志目录(/home/hadoop/app/hadoop-2.6.4/logs)
hadoop启动不正常
用浏览器访问namenode的50070端口,不正常,需要诊断问题出在哪里:
a、在服务器的终端命令行使用jps查看相关进程
(namenode1个节点 datanode3个节点 secondary namenode1个节点)
b、如果已经知道了启动失败的服务进程,进入到相关进程的日志目录下,查看日志,分析异常的原因
1)配置文件出错,saxparser exception; ——找到错误提示中所指出的配置文件检查修改即可
2)unknown host——主机名不认识,配置/etc/hosts文件即可,或者是配置文件中所用主机名跟实际不一致
(注:在配置文件中,统一使用主机名,而不要用ip地址)
3)directory 访问异常—— 检查namenode的工作目录,看权限是否正常
start-dfs.sh启动后,发现有datanode启动不正常
a)查看datanode的日志,看是否有异常,如果没有异常,手动将datanode启动起来
sbin/hadoop-daemon.sh start datanode
b)很有可能是slaves文件中就没有列出需要启动的datanode
c)排除上述两种情况后,基本上,能在日志中看到异常信息:
1、配置文件
2、ssh免密登陆没有配置好
3、datanode的身份标识跟namenode的集群身份标识不一致(删掉datanode的工作目录)
# HDFS冗余数据块的自动删除
在日常维护hadoop集群的过程中发现这样一种情况:
某个节点由于网络故障或者DataNode进程死亡,被NameNode判定为死亡,HDFS马上自动开始数据块的容错拷贝;当该节点重新添加到集群中时,由于该节点上的数据其实并没有损坏,所以造成了HDFS上某些block的备份数超过了设定的备份数。通过观察发现,这些多余的数据块经过很长的一段时间才会被完全删除掉,那么这个时间取决于什么呢?
该时间的长短跟数据块报告的间隔时间有关。Datanode会定期将当前该结点上所有的BLOCK信息报告给Namenode,参数dfs.blockreport.intervalMsec就是控制这个报告间隔的参数。
hdfs-site.xml文件中有一个参数:
~~~
<property>
<name>dfs.blockreport.intervalMsec</name>
<value>3600000</value>
<description>Determines block reporting interval in milliseconds.</description>
</property>
~~~
其中3600000为默认设置,3600000毫秒,即1个小时,也就是说,块报告的时间间隔为1个小时,所以经过了很长时间这些多余的块才被删除掉。通过实际测试发现,当把该参数调整的稍小一点的时候(60秒),多余的数据块确实很快就被删除了。
当namenode发现集群中的block丢失数量达到一个阀值时,namenode就进入安全模式状态,不再接受客户端的数据更新请求
# namenode安全模式
在正常情况下,namenode也有可能进入安全模式:
集群启动时(namenode启动时)必定会进入安全模式,然后过一段时间会自动退出安全模式(原因是datanode汇报的过程有一段持续时间)
也确实有异常情况下导致的安全模式
原因:block确实有缺失
措施:可以手动让namenode退出安全模式,`bin/hdfs dfsadmin -safemode leave`
或者:调整safemode门限值: `dfs.safemode.threshold.pct=0.999f`
安全模式下不能执行重要操作(写操作).集群启动完成后,自动退出安全模式
~~~
查看安全模式
hdfs dfsadmin -safemode get
进入安全模式状态
hdfs dfsadmin -safemode enter
离开安全模式状态
hdfs dfsadmin -safemode leave
等待安全模式状态
hdfs dfsadmin -safemode wait
~~~
# ntp时间服务同步
第一种方式:同步到网络时间服务器
~~~
# ntpdate time.windows.com
~~~
将硬件时间设置为当前系统时间。
~~~
#hwclock –w
~~~
加入crontab:
`30 8 * * * root /usr/sbin/ntpdate 192.168.0.1; /sbin/hwclock -w `每天的8:30将进行一次时间同步。
重启crond服务:
~~~
service crond restart
~~~
第二种方式:同步到局域网内部的一台时间同步服务器
一、搭建时间同步服务器
1、编译安装ntp server
~~~
rpm -qa | grep ntp
~~~
若没有找到,则说明没有安装ntp包,从光盘上找到ntp包,使用
~~~
rpm -Uvh ntp***.rpm
~~~
进行安装
2、修改ntp.conf配置文件
~~~
vi /etc/ntp.conf
~~~
①、第一种配置:允许任何IP的客户机都可以进行时间同步
将`“restrict default nomodify notrap noquery”`这行修改成:
`restrict default nomodify notrap`
配置文件示例:/etc/ntp.conf
②、第二种配置:只允许`192.168.211.***`网段的客户机进行时间同步
在restrict default nomodify notrap noquery(表示默认拒绝所有IP的时间同步)之后增加一行:
restrict 192.168.211.0 mask 255.255.255.0 nomodify notrap
3、启动ntp服务
service ntpd start
开机启动服务
chkconfig ntpd on
4、ntpd启动后,客户机要等几分钟再与其进行时间同步,否则会提示“no server suitable for synchronization found”错误。
二、配置时间同步客户机
手工执行` ntpdate <ntp server> `来同步
或者利用crontab来执行
~~~
crontab -e
0 21 * * * ntpdate 192.168.211.22 >> /root/ntpdate.log 2>&1
~~~
每天晚上9点进行同步
附:
当用ntpdate -d 来查询时会发现导致 no server suitable for synchronization found 的错误的信息有以下2个:
错误1.Server dropped: Strata too high
在ntp客户端运行ntpdate serverIP,出现no server suitable for synchronization found的错误。
在ntp客户端用ntpdate –d serverIP查看,发现有“Server dropped: strata too high”的错误,并且显示“stratum 16”。而正常情况下stratum这个值得范围是“0~15”。
这是因为NTP server还没有和其自身或者它的server同步上。
以下的定义是让NTP Server和其自身保持同步,如果在/ntp.conf中定义的server都不可用时,将使用local时间作为ntp服务提供给ntp客户端。
~~~
server 127.127.1.0
fudge 127.127.1.0 stratum 8
~~~
在ntp server上重新启动ntp服务后,ntp server自身或者与其server的同步的需要一个时间段,这个过程可能是5分钟,在这个时间之内在客户端运行ntpdate命令时会产生no server suitable for synchronization found的错误。
那么如何知道何时ntp server完成了和自身同步的过程呢?
在ntp server上使用命令:
`# watch ntpq -p`
出现画面:
~~~
Every 2.0s: ntpq -p Thu Jul 10 02:28:32 2008
remote refid st t when poll reach delay offset jitter
==============================================================================
192.168.30.22 LOCAL(0) 8 u 22 64 1 2.113 179133. 0.001
LOCAL(0) LOCAL(0) 10 l 21 64 1 0.000 0.000 0.001
~~~
注意LOCAL的这个就是与自身同步的ntp server。
注意reach这个值,在启动ntp server服务后,这个值就从0开始不断增加,当增加到17的时候,从0到17是5次的变更,每一次是poll的值的秒数,是`64秒*5=320秒`的时间。
如果之后从ntp客户端同步ntp server还失败的话,用ntpdate –d来查询详细错误信息,再做判断。
错误2.`Server dropped: no data`
从客户端执行netdate –d时有错误信息如下:
~~~
transmit(192.168.30.22) transmit(192.168.30.22)
transmit(192.168.30.22)
transmit(192.168.30.22)
transmit(192.168.30.22)
192.168.30.22: Server dropped: no data
server 192.168.30.22, port 123
.....
~~~
`28 Jul 17:42:24 ntpdate[14148]: no server suitable for synchronization found`出现这个问题的原因可能有2:
1. 检查ntp的版本,如果你使用的是ntp4.2(包括4.2)之后的版本,在restrict的定义中使用了notrust的话,会导致以上错误。
使用以下命令检查ntp的版本:
`# ntpq -c version`
下面是来自ntp官方网站的说明:
~~~
The behavior of notrust changed between versions 4.1 and 4.2.
In 4.1 (and earlier) notrust meant "Don't trust this host/subnet for time".
In 4.2 (and later) notrust means "Ignore all NTP packets that are not cryptographically authenticated." This forces remote time servers to authenticate themselves to your (client) ntpd
~~~
解决:
把notrust去掉。
2. 检查ntp server的防火墙。可能是server的防火墙屏蔽了upd 123端口。
可以用命令
~~~
#service iptables stop
~~~
来关掉iptables服务后再尝试从ntp客户端的同步,如果成功,证明是防火墙的问题,需要更改iptables的设置。
# java.io.IOException: HADOOP_HOME or hadoop.home.dir are not set.的问题
来自https://www.cnblogs.com/huxinga/p/6875929.html
报错如下:
~~~
300 [main] DEBUG org.apache.hadoop.util.Shell - Failed to detect a valid hadoop home directory
java.io.IOException: HADOOP_HOME or hadoop.home.dir are not set
~~~
**解决办法一:**
~~~
根据 http://blog.csdn.net/baidu_19473529/article/details/54693523 配置hadoop_home变量
下载winutils地址https://github.com/srccodes/hadoop-common-2.2.0-bin下载解压
~~~
![](images/screenshot_1525163820668.png)
依然报相同的错误
**解决办法二:**
在java程序中加入
~~~
System.setProperty("hadoop.home.dir", "/usr/local/hadoop-2.6.0");
~~~
依然报错
**解决办法三:**
根据该提示:
![](images/screenshot_1525163852934.png)
依然报错
今天早上再次执行该程序,将上传到HDFS部分的代码给注释掉后发现日志报错信息如下:
~~~
132 [main] DEBUG org.apache.hadoop.util.NativeCodeLoader - Trying to load the custom-built native-hadoop library...
134 [main] DEBUG org.apache.hadoop.util.NativeCodeLoader - Failed to load native-hadoop with error: java.lang.UnsatisfiedLinkError: no hadoop in java.library.path
~~~
1)check Hadoop library:
~~~
root@Ubuntu-1:/usr/local/hadoop-2.6.0/lib/native# file libhadoop.so.1.0.0
~~~
~~~
It's 64-bite library
~~~
2)Try adding the HADOOP_OPTS environment variable:
~~~
root@Ubuntu-1:~# vi /etc/profile //environment variable
export HADOOP_OPTS="-Djava.library.path=${HADOOP_HOME}/lib/native/"
It doesn't work, and reports the same error.
~~~
3)Try adding the HADOOP_OPTS and HADOOP_COMMON_LIB_NATIVE_DIR environment variable:
~~~
export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_HOME}/lib/native
export HADOOP_OPTS="-Djava.library.path=${HADOOP_HOME}/lib/"
It still doesn't work, and reports the same error.
~~~
4)Adding the Hadoop library into LD_LIBRARY_PATH
~~~
root@Ubuntu-1:~# vi .bashrc
export LD_LIBRARY_PATH=/usr/local/hadoop/lib/native/:$LD_LIBRARY_PATH
It doesn't work, and reports the same error.
~~~
5)append word native to HADOOP_OPTS like this
~~~
export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=$HADOOP_HOME/lib/native"
It doesn't work, and reports the same error.
~~~
win下依旧无法使用java代码上传文件到HDFS
copy了一份hadoop-2.6.0文件到本机,更改bin目录和path ,显示无效的path,遂更改回去
今天早上开机 试了一下 发现它已经好了 其实上述的设置已经可以解决大部分遇到这类问题的人群
- 基础
- 编译和安装
- classpath到底是什么?
- 编译运行
- 安装
- sdkman多版本
- jabba多版本
- java字节码查看
- 数据类型
- 简介
- 整形
- char和int
- 变量和常量
- 大数值运算
- 基本类型包装类
- Math类
- 内存划分
- 位运算符
- 方法相关
- 方法重载
- 可变参数
- 方法引用
- 面向对象
- 定义
- 继承和覆盖
- 接口和抽象类
- 接口定义增强
- 内建函数式接口
- 多态
- 泛型
- final和static
- 内部类
- 包
- 修饰符
- 异常
- 枚举类
- 代码块
- 对象克隆
- BeanUtils
- java基础类
- scanner类
- Random类
- System类
- Runtime类
- Comparable接口
- Comparator接口
- MessageFormat类
- NumberFormat
- 数组相关
- 数组
- Arrays
- string相关
- String
- StringBuffer
- StringBuilder
- 正则
- 日期类
- Locale类
- Date
- DateFormat
- SimpleDateFormat
- Calendar
- 新时间日期API
- 简介
- LocalDate,LocalTime,LocalDateTime
- Instant时间点
- 带时区的日期,时间处理
- 时间间隔
- 日期时间校正器
- TimeUnit
- 用yyyy
- 集合
- 集合和迭代器
- ArrayList集合
- List
- Set
- 判断集合唯一
- Map和Entry
- stack类
- Collections集合工具类
- Stream数据流
- foreach不能修改内部元素
- of方法
- IO
- File类
- 字节流stream
- 字符流Reader
- IO流分类
- 转换流
- 缓冲流
- 流的操作规律
- properties
- 序列化流与反序列化流
- 打印流
- System类对IO支持
- commons-IO
- IO流总结
- NIO
- 异步与非阻塞
- IO通信
- Unix的IO模型
- epoll对于文件描述符操作模式
- 用户空间和内核空间
- NIO与普通IO的主要区别
- Paths,Path,Files
- Buffer
- Channel
- Selector
- Pipe
- Charset
- NIO代码
- 多线程
- 创建线程
- 线程常用方法
- 线程池相关
- 线程池概念
- ThreadPoolExecutor
- Runnable和Callable
- 常用的几种线程池
- 线程安全
- 线程同步的几种方法
- synchronized
- 死锁
- lock接口
- ThreadLoad
- ReentrantLock
- 读写锁
- 锁的相关概念
- volatile
- 释放锁和不释放锁的操作
- 等待唤醒机制
- 线程状态
- 守护线程和普通线程
- Lamda表达式
- 反射相关
- 类加载器
- 反射
- 注解
- junit注解
- 动态代理
- 网络编程相关
- 简介
- UDP
- TCP
- 多线程socket上传图片
- NIO
- JDBC相关
- JDBC
- 预处理
- 批处理
- 事务
- properties配置文件
- DBUtils
- DBCP连接池
- C3P0连接池
- 获得MySQL自动生成的主键
- Optional类
- Jigsaw模块化
- 日志相关
- JDK日志
- log4j
- logback
- xml
- tomcat
- maven
- 简介
- 仓库
- 目录结构
- 常用命令
- 生命周期
- idea配置
- jar包冲突
- 依赖范围
- 私服
- 插件
- git-commit-id-plugin
- maven-assembly-plugin
- maven-resources-plugin
- maven-compiler-plugin
- versions-maven-plugin
- maven-source-plugin
- tomcat-maven-plugin
- 多环境
- 自定义插件
- stream
- swing
- json
- jackson
- optional
- junit
- gradle
- servlet
- 配置
- ServletContext
- 生命周期
- HttpServlet
- request
- response
- 乱码
- session和cookie
- cookie
- session
- jsp
- 简介
- 注释
- 方法,成员变量
- 指令
- 动作标签
- 隐式对象
- EL
- JSTL
- javaBean
- listener监听器
- Filter过滤器
- 图片验证码
- HttpUrlConnection
- 国际化
- 文件上传
- 文件下载
- spring
- 简介
- Bean
- 获取和实例化
- 属性注入
- 自动装配
- 继承和依赖
- 作用域
- 使用外部属性文件
- spel
- 前后置处理器
- 生命周期
- 扫描规则
- 整合多个配置文件
- 注解
- 简介
- 注解分层
- 类注入
- 分层和作用域
- 初始化方法和销毁方法
- 属性
- 泛型注入
- Configuration配置文件
- aop
- aop的实现
- 动态代理实现
- cglib代理实现
- aop名词
- 简介
- aop-xml
- aop-注解
- 代理方式选择
- jdbc
- 简介
- JDBCTemplate
- 事务
- 整合
- junit整合
- hibernate
- 简介
- hibernate.properties
- 实体对象三种状态
- 检索方式
- 简介
- 导航对象图检索
- OID检索
- HQL
- Criteria(QBC)
- Query
- 缓存
- 事务管理
- 关系映射
- 注解
- 优化
- MyBatis
- 简介
- 入门程序
- Mapper动态代理开发
- 原始Dao开发
- Mapper接口开发
- SqlMapConfig.xml
- map映射文件
- 输出返回map
- 输入参数
- pojo包装类
- 多个输入参数
- resultMap
- 动态sql
- 关联
- 一对一
- 一对多
- 多对多
- 整合spring
- CURD
- 占位符和sql拼接以及参数处理
- 缓存
- 延迟加载
- 注解开发
- springMVC
- 简介
- RequestMapping
- 参数绑定
- 常用注解
- 响应
- 文件上传
- 异常处理
- 拦截器
- springBoot
- 配置
- 热更新
- java配置
- springboot配置
- yaml语法
- 运行
- Actuator 监控
- 多环境配置切换
- 日志
- 日志简介
- logback和access
- 日志文件配置属性
- 开机自启
- aop
- 整合
- 整合Redis
- 整合Spring Data JPA
- 基本查询
- 复杂查询
- 多数据源的支持
- Repository分析
- JpaSpecificationExecutor
- 整合Junit
- 整合mybatis
- 常用注解
- 基本操作
- 通用mapper
- 动态sql
- 关联映射
- 使用xml
- spring容器
- 整合druid
- 整合邮件
- 整合fastjson
- 整合swagger
- 整合JDBC
- 整合spingboot-cache
- 请求
- restful
- 拦截器
- 常用注解
- 参数校验
- 自定义filter
- websocket
- 响应
- 异常错误处理
- 文件下载
- 常用注解
- 页面
- Thymeleaf组件
- 基本对象
- 内嵌对象
- 上传文件
- 单元测试
- 模拟请求测试
- 集成测试
- 源码解析
- 自动配置原理
- 启动流程分析
- 源码相关链接
- Servlet,Filter,Listener
- springcloud
- 配置
- 父pom
- 创建子工程
- Eureka
- Hystrix
- Ribbon
- Feign
- Zuul
- kotlin
- 基本数据类型
- 函数
- 区间
- 区块链
- 简介
- linux
- ulimit修改
- 防止syn攻击
- centos7部署bbr
- debain9开启bbr
- mysql
- 隔离性
- sql执行加载顺序
- 7种join
- explain
- 索引失效和优化
- 表连接优化
- orderby的filesort问题
- 慢查询
- show profile
- 全局查询日志
- 死锁解决
- sql
- 主从
- IDEA
- mac快捷键
- 美化界面
- 断点调试
- 重构
- springboot-devtools热部署
- IDEA进行JAR打包
- 导入jar包
- ProjectStructure
- toString添加json模板
- 配置maven
- Lombok插件
- rest client
- 文档显示
- sftp文件同步
- 书签
- 代码查看和搜索
- postfix
- live template
- git
- 文件头注释
- JRebel
- 离线模式
- xRebel
- github
- 连接mysql
- 选项没有Java class的解决方法
- 扩展
- 项目配置和web部署
- 前端开发
- json和Inject language
- idea内存和cpu变高
- 相关设置
- 设计模式
- 单例模式
- 简介
- 责任链
- JUC
- 原子类
- 原子类简介
- 基本类型原子类
- 数组类型原子类
- 引用类型原子类
- JVM
- JVM规范内存解析
- 对象的创建和结构
- 垃圾回收
- 内存分配策略
- 备注
- 虚拟机工具
- 内存模型
- 同步八种操作
- 内存区域大小参数设置
- happens-before
- web service
- tomcat
- HTTPS
- nginx
- 变量
- 运算符
- 模块
- Rewrite规则
- Netty
- netty为什么没用AIO
- 基本组件
- 源码解读
- 简单的socket例子
- 准备netty
- netty服务端启动
- 案例一:发送字符串
- 案例二:发送对象
- websocket
- ActiveMQ
- JMS
- 安装
- 生产者-消费者代码
- 整合springboot
- kafka
- 简介
- 安装
- 图形化界面
- 生产过程分析
- 保存消息分析
- 消费过程分析
- 命令行
- 生产者
- 消费者
- 拦截器interceptor
- partition
- kafka为什么快
- kafka streams
- kafka与flume整合
- RabbitMQ
- AMQP
- 整体架构
- RabbitMQ安装
- rpm方式安装
- 命令行和管控页面
- 消息生产与消费
- 整合springboot
- 依赖和配置
- 简单测试
- 多方测试
- 对象支持
- Topic Exchange模式
- Fanout Exchange订阅
- 消息确认
- java client
- RabbitAdmin和RabbitTemplate
- 两者简介
- RabbitmqAdmin
- RabbitTemplate
- SimpleMessageListenerContainer
- MessageListenerAdapter
- MessageConverter
- 详解
- Jackson2JsonMessageConverter
- ContentTypeDelegatingMessageConverter
- lucene
- 简介
- 入门程序
- luke查看索引
- 分析器
- 索引库维护
- elasticsearch
- 配置
- 插件
- head插件
- ik分词插件
- 常用术语
- Mapping映射
- 数据类型
- 属性方法
- Dynamic Mapping
- Index Template 索引模板
- 管理映射
- 建立映射
- 索引操作
- 单模式下CURD
- mget多个文档
- 批量操作
- 版本控制
- 基本查询
- Filter过滤
- 组合查询
- 分析器
- redis
- String
- list
- hash
- set
- sortedset
- 发布订阅
- 事务
- 连接池
- 管道
- 分布式可重入锁
- 配置文件翻译
- 持久化
- RDB
- AOF
- 总结
- Lettuce
- zookeeper
- zookeeper简介
- 集群部署
- Observer模式
- 核心工作机制
- zk命令行操作
- zk客户端API
- 感知服务动态上下线
- 分布式共享锁
- 原理
- zab协议
- 两阶段提交协议
- 三阶段提交协议
- Paxos协议
- ZAB协议
- hadoop
- 简介
- hadoop安装
- 集群安装
- 单机安装
- linux编译hadoop
- 添加新节点
- 退役旧节点
- 集群间数据拷贝
- 归档
- 快照管理
- 回收站
- 检查hdfs健康状态
- 安全模式
- hdfs简介
- hdfs命令行操作
- 常见问题汇总
- hdfs客户端操作
- mapreduce工作机制
- 案例-单词统计
- 局部聚合Combiner
- combiner流程
- combiner案例
- 自定义排序
- 自定义Bean对象
- 排序的分类
- 案例-按总量排序需求
- 一次性完成统计和排序
- 分区
- 分区简介
- 案例-结果分区
- 多表合并
- reducer端合并
- map端合并(分布式缓存)
- 分组
- groupingComparator
- 案例-求topN
- 全局计数器
- 合并小文件
- 小文件的弊端
- CombineTextInputFormat机制
- 自定义InputFormat
- 自定义outputFormat
- 多job串联
- 倒排索引
- 共同好友
- 串联
- 数据压缩
- InputFormat接口实现类
- yarn简介
- 推测执行算法
- 本地提交到yarn
- 框架运算全流程
- 数据倾斜问题
- mapreduce的优化方案
- HA机制
- 优化
- Hive
- 安装
- shell参数
- 数据类型
- 集合类型
- 数据库
- DDL操作
- 创建表
- 修改表
- 分区表
- 分桶表
- DML操作
- load
- insert
- select
- export,import
- Truncate
- 注意
- 严格模式
- 函数
- 内置运算符
- 内置函数
- 自定义函数
- Transfrom实现
- having和where不同
- 压缩
- 存储
- 存储和压缩结合使用
- explain详解
- 调优
- Fetch抓取
- 本地模式
- 表的优化
- GroupBy
- count(Distinct)去重统计
- 行列过滤
- 动态分区调整
- 数据倾斜
- 并行执行
- JVM重用
- 推测执行
- reduce内存和个数
- sql查询结果作为变量(shell)
- youtube
- flume
- 简介
- 安装
- 常用组件
- 拦截器
- 案例
- 监听端口到控制台
- 采集目录到HDFS
- 采集文件到HDFS
- 多个agent串联
- 日志采集和汇总
- 单flume多channel,sink
- 自定义拦截器
- 高可用配置
- 使用注意
- 监控Ganglia
- sqoop
- 安装
- 常用命令
- 数据导入
- 准备数据
- 导入数据到HDFS
- 导入关系表到HIVE
- 导入表数据子集
- 增量导入
- 数据导出
- 打包脚本
- 作业
- 原理
- azkaban
- 简介
- 安装
- 案例
- 简介
- command类型单一job
- command类型多job工作流flow
- HDFS操作任务
- mapreduce任务
- hive脚本任务
- oozie
- 安装
- hbase
- 简介
- 系统架构
- 物理存储
- 寻址机制
- 读写过程
- 安装
- 命令行
- 基本CURD
- java api
- CURD
- CAS
- 过滤器查询
- 建表高级属性
- 与mapreduce结合
- 与sqoop结合
- 协处理器
- 参数配置优化
- 数据备份和恢复
- 节点管理
- 案例-点击流
- 简介
- HUE
- 安装
- storm
- 简介
- 安装
- 集群启动及任务过程分析
- 单词统计
- 单词统计(接入kafka)
- 并行度和分组
- 启动流程分析
- ACK容错机制
- ACK简介
- BaseRichBolt简单使用
- BaseBasicBolt简单使用
- Ack工作机制
- 本地目录树
- zookeeper目录树
- 通信机制
- 案例
- 日志告警
- 工具
- YAPI
- chrome无法手动拖动安装插件
- 时间和空间复杂度
- jenkins
- 定位cpu 100%
- 常用脚本工具
- OOM问题定位
- scala
- 编译
- 基本语法
- 函数
- 数组常用方法
- 集合
- 并行集合
- 类
- 模式匹配
- 异常
- tuple元祖
- actor并发编程
- 柯里化
- 隐式转换
- 泛型
- 迭代器
- 流stream
- 视图view
- 控制抽象
- 注解
- spark
- 企业架构
- 安装
- api开发
- mycat
- Groovy
- 基础