ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
[TOC] # 语法 ~~~ explain [extended | dependency | authorization] query ~~~ 加上extended就是显示更详细的信息 # hive语句执行顺序 ## msyql语句执行顺序 代码写的顺序: ~~~ select ... from... where.... group by... having... order by.. 或者 from ... select ... ~~~ 代码的执行顺序: ~~~ from... where...group by... having.... select ... order by... ~~~ ## hive 语句执行顺序 大致顺序 ~~~ from … where … group by … having … select … order by … from … on … join … where … group by … having … select … distinct … order by … limit ~~~ # explain查看执行计划 ## 例子一 ~~~ select count(1) from dw.fact_ord_arranged where dt = '20160101' ~~~ ~~~ Explain STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 is a root stage STAGE PLANS: Stage: Stage-1 Map Reduce Map Operator Tree: --------------- Map阶段 TableScan alias: fact_ord_arranged --------------- 扫描的表 Statistics: Num rows: 0 Data size: 1379094784 Basic stats: PARTIAL Column stats: COMPLETE Select Operator Statistics: Num rows: 0 Data size: 1379094784 Basic stats: PARTIAL Column stats: COMPLETE Group By Operator aggregations: count(1) --------------- 聚合函数 mode: hash outputColumnNames: _col0 --------------- 临时字段 Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: COMPLETE Reduce Output Operator sort order: Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: COMPLETE value expressions: _col0 (type: bigint) Reduce Operator Tree: --------------- Reduce阶段 Group By Operator aggregations: count(VALUE._col0) mode: mergepartial outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: COMPLETE Select Operator expressions: _col0 (type: bigint) outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: COMPLETE File Output Operator compressed: false Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: COMPLETE table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat --------------- 输出文件格式 serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0 Fetch Operator limit: -1 --------------- job没有limit,所有没有操作 ~~~ ## 例子二 ~~~ explain select city,ad_type,device,sum(cnt) as cnt from tb_pmp_raw_log_basic_analysis where day = '2016-05-28' and type = 0 and media = 'sohu' and (deal_id = '' or deal_id = '-' or deal_id is NULL) group by city,ad_type,device ~~~ ~~~ STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 is a root stage STAGE PLANS: Stage: Stage-1 Map Reduce Map Operator Tree: TableScan alias: tb_pmp_raw_log_basic_analysis Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (((deal_id = '') or (deal_id = '-')) or deal_id is null) (type: boolean) Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: city (type: string), ad_type (type: string), device (type: string), cnt (type: bigint) outputColumnNames: city, ad_type, device, cnt Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE Group By Operator aggregations: sum(cnt) keys: city (type: string), ad_type (type: string), device (type: string) mode: hash outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string) sort order: +++ Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string) Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE value expressions: _col3 (type: bigint) Reduce Operator Tree: Group By Operator aggregations: sum(VALUE._col0) keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string) mode: mergepartial outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: bigint) outputColumnNames: _col0, _col1, _col2, _col3 Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0 Fetch Operator limit: -1 ~~~ ~~~ 具体介绍如下 **stage1的map阶段** TableScan:from加载表,描述中有行数和大小等 Filter Operator:where过滤条件筛选数据,描述有具体筛选条件和行数、大小等 Select Operator:筛选列,描述中有列名、类型,输出类型、大小等。 Group By Operator:分组,描述了分组后需要计算的函数,keys描述用于分组的列,outputColumnNames为输出的列名,可以看出列默认使用固定的别名_col0,以及其他信息 Reduce Output Operator:map端本地的reduce,进行本地的计算,然后按列映射到对应的reduce **stage1的reduce阶段Reduce Operator Tree** Group By Operator:总体分组,并按函数计算。map计算后的结果在reduce端的合并。描述类似。mode: mergepartial是说合并map的计算结果。map端是hash映射分组 Select Operator:最后过滤列用于输出结果 File Output Operator:输出结果到临时文件中,描述介绍了压缩格式、输出文件格式。 stage0第二阶段没有,这里可以实现limit 100的操作。 ~~~ 总结 ~~~ 1,每个stage都是一个独立的MR,复杂的hql语句可以产生多个stage,可以通过执行计划的描述,看看具体步骤是什么。 2,执行计划有时预测数据量,不是真实运行,可能不准确 ~~~ # group by的MR ~~~ hive语句最好写子查询嵌套,这样分阶段的导入数据,可以逐步减少数据量。但可能会浪费时间。所以需要设计好。 group by本身也是一种数据筛选,可以大量减少数据,尤其用于去重等方面,功效显著。但group by产生MR有时不可控,不知道在哪个阶段更好。尤其,map端本地的reduce减少数据有很大作用。 尤其,hadoop的MR不患寡而患不均。数据倾斜将是MR计算的最大瓶颈。hive中可以设置分区、桶、distribute by等来控制分配数据给Reduce。 那么,group by生成MR是否可以优化呢? 下面两端代码,可以对比一下, ~~~ 代码1 ~~~ explain select advertiser_id,crt_id,ad_place_id,channel,ad_type,rtb_type,media,count(1) as cnt from ( select split(all,'\\\\|~\\\\|')[41] as advertiser_id, split(all,'\\\\|~\\\\|')[11] as crt_id, split(all,'\\\\|~\\\\|')[8] as ad_place_id, split(all,'\\\\|~\\\\|')[34] as channel, split(all,'\\\\|~\\\\|')[42] as ad_type, split(all,'\\\\|~\\\\|')[43] as rtb_type, split(split(all,'\\\\|~\\\\|')[5],'/')[1] as media from tb_pmp_raw_log_bid_tmp tb ) a group by advertiser_id,crt_id,ad_place_id,channel,ad_type,rtb_type,media; ~~~ 代码2 ~~~ explain select split(all,'\\\\|~\\\\|')[41] as advertiser_id, split(all,'\\\\|~\\\\|')[11] as crt_id, split(all,'\\\\|~\\\\|')[8] as ad_place_id, split(all,'\\\\|~\\\\|')[34] as channel, split(all,'\\\\|~\\\\|')[42] as ad_type, split(all,'\\\\|~\\\\|')[43] as rtb_type, split(split(all,'\\\\|~\\\\|')[5],'/')[1] as media from tb_pmp_raw_log_bid_tmp tb group by split(all,'\\\\|~\\\\|')[41],split(all,'\\\\|~\\\\|')[11],split(all,'\\\\|~\\\\|')[8],split(all,'\\\\|~\\\\|')[34],split(all,'\\\\|~\\\\|')[42],split(all,'\\\\|~\\\\|')[43],split(split(all,'\\\\|~\\\\|')[5],'/')[1] ~~~ ~~~ 先进行子查询,然后group by,还是直接group by,两种那个好一点, 我个人测试后认为,数据量小,第一种会好一点,如果数据量大,可能第二种会好。至于数据量多大。TB级以下的都是小数据。 两个执行计划对比如下,可以看出基本执行的步骤的数据分析量差不多。 group by一定要用,但内外,先后执行顺序效果差不多。 ~~~